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The problem

• finite combinatorics, theoretical computer science

• G is a graph, P is property of graph,

• Does G have property P?

• We know the vertex set V of G.

• We do not know the edge set E of G.

• We can ask questions of the form "is there an edge between
vertices x and y?”

• What is the minimum of the number of questions we need in the
worst case?

• Need assumptions:

• 1. P is a non-trivial property

• 2. P is a graph property (i.e. preserved by isomorphism)
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A bold conjecture

• P is a non-trivial graph property. V is a (finite) vertex set.

• Test this property by asking questions of the form " is there an
edge between vertices x and y?"

• What is the minimal number of such questions in the worst case?

Definition
Let µ(P,n) be the minimal number of such questions in the worst
case when |V | = n

A bold conjecture (Aanderaa-Rosenberg)

µ(P,n) =
(n

2

)
for any non-trivial graph property P and n ∈ ω.
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A counterexample

Theorem (Best,Boas, Lenstra)
There is a non-trivial graph property such that µ(P,n) <

(n
2

)
.

Property Pn:
V has a partition V = {u} ∪ {vi : i < n − 4} ∪ {x0, x1, x2} such that

• degG(u) = n − 4

• degG(vi ) = 1 and uvi ∈ E for i < n − 4

An algoritm for the Seeker:

• divide V into two large pieces: n = A0 ∪ A1. (|Ai | ≥ 6)

• Ask all the edges between A0 and A1. We know u.

• Ask all the pairs which contains u. We know the partition.

• Ask all the pairs vivj and vixk . We know if G has property Pn.

• There is k < 2 and i 6= j < 3 such that xi , xj ∈ Ak . We did not
asked xixj .
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More modest conjectures

Conjecture
If P is a non-trivial graph property and n ∈ ω, then µ(P,n) = Ω(n2)
(i.e. µ(P,n) ≥ c · n2 for some c > 0).

Definition
A graph G = 〈V ,E〉 is a scorpion iff G has 3 special vertices, called
the sting, the tail, and the body:

• the sting is connected only to the tail,

• the tail is connected only to the sting and the body,

• and the body is connected to all vertices except the sting.

sting tail body

Theorem (Best,Boas, Lenstra)
There is an algorithm using only O(n) questions to determine if G is a
scorpion.
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More modest conjectures

Definition
A property P is monotone if it remains true when edges are added.

Conjecture (Aanderaa-Rosenberg)
If P is a monotone, non-trivial graph property, then µ(P,n) = Ω(n2)
(i.e. µ(P,n) ≥ c · n2 for some c > 0).

Theorem (Rivest and Vuillemin)
The Anderaa-Rosenberg conjecture holds.

Conjecture (Aanderaa–Karp–Rosenberg)
If P is a monotone, non-trivial graph property, then µ(P,n) =

(n
2

)
.

Definition
A property P is elusive if µ(P,n) =

(n
2

)
.
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An open problem

Conjecture (Aanderaa–Karp–Rosenberg)
If P is a monotone, non-trivial graph property, then P is elusive.

Theorem (Bollobás)
The property "G contains Km" is elusive.

Theorem (Kahn, Sacks and Sturtevant)
If P is a monotone, non-trivial graph property, then µ(P,n) =

(n
2

)
provided that n is a prime power.

Theorem (Yao)
If P is a monotone, non-trivial graph property, then P is elusive on the
bipartite graphs.
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What about infinite graphs?



Basic definition

• A triple G = 〈V ,E ,N〉 is an pregraphs iff E ∪ N ⊂ [V ]2 and
E ∩ N = ∅.

• V is the set of vertices,

• E is the set of edges, and

• N is the set of nonedges,

• P = E ∪ N is the set of determined pairs of G, and

• U = [V ]2 \ P is the set of undetermined pairs of G.

• min G = 〈V ,E〉 and max G = 〈V ,E ∪ U〉.



Basic definition

• A triple G = 〈V ,E ,N〉 is an pregraphs iff E ∪ N ⊂ [V ]2 and
E ∩ N = ∅.

• V is the set of vertices,

• E is the set of edges, and

• N is the set of nonedges,

• P = E ∪ N is the set of determined pairs of G, and

• U = [V ]2 \ P is the set of undetermined pairs of G.

• min G = 〈V ,E〉 and max G = 〈V ,E ∪ U〉.



Basic definition

• A triple G = 〈V ,E ,N〉 is an pregraphs iff E ∪ N ⊂ [V ]2 and
E ∩ N = ∅.

• V is the set of vertices,

• E is the set of edges, and

• N is the set of nonedges,

• P = E ∪ N is the set of determined pairs of G, and

• U = [V ]2 \ P is the set of undetermined pairs of G.

• min G = 〈V ,E〉 and max G = 〈V ,E ∪ U〉.



Basic definition

• A triple G = 〈V ,E ,N〉 is an pregraphs iff E ∪ N ⊂ [V ]2 and
E ∩ N = ∅.

• V is the set of vertices,

• E is the set of edges, and

• N is the set of nonedges,

• P = E ∪ N is the set of determined pairs of G, and

• U = [V ]2 \ P is the set of undetermined pairs of G.

• min G = 〈V ,E〉 and max G = 〈V ,E ∪ U〉.



Basic definition

• A triple G = 〈V ,E ,N〉 is an pregraphs iff E ∪ N ⊂ [V ]2 and
E ∩ N = ∅.

• V is the set of vertices,

• E is the set of edges, and

• N is the set of nonedges,

• P = E ∪ N is the set of determined pairs of G, and

• U = [V ]2 \ P is the set of undetermined pairs of G.

• min G = 〈V ,E〉 and max G = 〈V ,E ∪ U〉.



Basic definition

• A triple G = 〈V ,E ,N〉 is an pregraphs iff E ∪ N ⊂ [V ]2 and
E ∩ N = ∅.

• V is the set of vertices,

• E is the set of edges, and

• N is the set of nonedges,

• P = E ∪ N is the set of determined pairs of G, and

• U = [V ]2 \ P is the set of undetermined pairs of G.

• min G = 〈V ,E〉 and max G = 〈V ,E ∪ U〉.



Basic definition

• A triple G = 〈V ,E ,N〉 is an pregraphs iff E ∪ N ⊂ [V ]2 and
E ∩ N = ∅.

• V is the set of vertices,

• E is the set of edges, and

• N is the set of nonedges,

• P = E ∪ N is the set of determined pairs of G, and

• U = [V ]2 \ P is the set of undetermined pairs of G.

• min G = 〈V ,E〉 and max G = 〈V ,E ∪ U〉.



Basic definition

• A triple G = 〈V ,E ,N〉 is an pregraphs iff E ∪ N ⊂ [V ]2 and
E ∩ N = ∅.

• V is the set of vertices,

• E is the set of edges, and

• N is the set of nonedges,

• P = E ∪ N is the set of determined pairs of G, and

• U = [V ]2 \ P is the set of undetermined pairs of G.

• min G = 〈V ,E〉 and max G = 〈V ,E ∪ U〉.



Basic definition

Definition
Let R be a monotone graph property and V be a vertex set.

Define the game EV ,R between two players, the Seeker and the
Hider, as follows:

(1) They construct a sequence 〈Gα : α ≤ β〉 of pregraphs on V .

(2) The game terminates when EGβ
∪ NGβ

= [V ]2, i.e UGβ
= ∅.

(3) Let G0 = 〈V , ∅, ∅〉.

(4) EGα
=
⋃
ζ<α EGζ

and NGα
=
⋃
ζ<α NGα

for limit α.

(5) If α = γ + 1, the Seeker picks an undetermined pair eγ ∈ UGγ
,

the Hider decides if eγ is an edge, or a nonedge in Gα,

(6) the Hider wins iff the graph 〈V ,EGα
〉 does not have property R,

but graph 〈V ,EGα
∪ UGα

〉 has property R for each α < β.

A graph property R is elusive on a set V iff the Hider has a winning
strategy in the game EV ,R .
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The property “the graph contains a cycle ” is elusive for any vertex
set V .

Proof:

• The Hider can win using a following greedy algorithm.

• We have a pregraph Gα = 〈V ,Eα,Nα〉 in the αth step and the
Seeker selected the pair eα.

• If 〈V ,Eα ∪ {eα}〉 is cycle-free, then Hider declares that eα is an
edge, i.e. Eα+1 = Eα ∪ {eα}.

• Otherwise eα will be a nonedge.

• Assume that the game terminates after β turns.

• Claim 1. For each α ≤ β the graph Gα is cycle-free.

• Claim 2. If Gα is connected and UGα
6= ∅, then max Gα contains

a cycle.

• Claim 3. If Gα is not connected then max Gα contains a triangle.
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A naive conjecture

Naive conjecture: Every monotone graph property is elusive on
every infinite vertex set.
If R is a monotone graph property such that

for each graph G = 〈V ,E〉 and e ∈ E ,
the graph G has property R iff 〈V ,E \ {e}〉 has property R (∗)

then the Seeker has a trivial winning strategy:

• they enumerates [V ]2 as 〈eα : α ≤ β〉, and

• they picks eα in the αth step.

• 〈V ,Eβ〉 has property R iff 〈V ,Eβ ∪ {eβ}〉 has property R.

• So the Seeker wins.

The property " every vertex has infinite degree" is clearly monotone
and has property (∗).

Revised Naive conjecture: Every "natural" monotone graph
property is elusive on every infinite vertex set.
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Restriction on edges

Definition
Let R be a monotone graph property and let H = 〈V ,F 〉 be a graph.

Define the game EH,R between two players, Seeker and Hider, as
follows:

(1) They construct a sequence 〈Gα : α ≤ β〉 of pregraphs on V .

(2) The game terminates when EGβ
∪ NGβ

= F .

(3) Let G0 = 〈V , ∅, ∅〉.

(4) EGα
=
⋃
ζ<α EGζ

and NGα
=
⋃
ζ<α NGα

for limit α.

(5) If α = γ + 1, Seeker picks an undetermined pair
eγ ∈ F \ (EGγ

∪ NGγ
) , Hider decides if eγ is an edge, or a

nonedge in Gα,

(6) Hider wins iff the graph 〈V ,EGα
〉 does not have property R, but

graph 〈V ,F \ NGα
〉 has property R for each α < β.

R is H-elusive iff Hider has a winning strategy in EV ,R .
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Two negative theorems

Definition
Let H = 〈V ,E∗〉 be a graph. A vertex set L ⊂ V is a covering set iff
for each v ∈ V \ L there is a ∈ L with {v ,a} ∈ E∗.

We say that G is braided iff for each W ∈ [V ]<|V | there is a finite
covering set L ∈ [V \W ]<ω.

Definition
Define the Cantor graph C as follows: its vertex set is the set of all
finite 0-1 sequences, and {s, t} is an edge iff s ⊂ t or t ⊂ s.

Proposition
Given an infinite cardinal κ, the infinite complete graph Kκ, the
balanced bipartite graph Kκ,κ, the Turan graphs T (κ,n) for n ∈ ω, and
the Cantor graph C are braided.
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Two negative theorems

Theorem
For each natural number n and for each infinite braided graph
H = 〈V ,E∗〉 the monotone graph property Rn

" degG(v) ≥ n for each vertex v"

is not H-elusive.

Theorem
For each natural number n and for each infinite braided graph
H = 〈V ,E∗〉 the monotone graph property Cn

" the connected components have size at least n"

is not H-elusive.



A positive result

Theorem
The monotone graph property R

“the graph contains a cycle ”

is elusive for any vertex set V .

The property R is KV -elusive for any vertex set V , where KV is the
complete graph on V.

Theorem
Let H be a graph. The following two statements are equivalent:

• Every connected component of H is 2-edge connected,

• the monotone graph property R

“ the graph contains a cycle ”

is H-elusive.
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An infinite version of the Aanderaa-Rosenberg conjecture

Theorem
If P is a monotone, non-trivial graph property, then µ(P,n) = Ω(n2)
(i.e. µ(P,n) ≥ c · n2 for some c > 0).

What about infinite graph?

"The seeker should ask lots of edges"
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Definition
Let R be a monotone graph property and V be a vertex set and
I ⊂ P([V ]2) be downwards closed.

Define the game EV ,I,R between two players, Seeker and Hider, as
follows:
(1) They construct a sequence 〈Gα : α ≤ β〉 of pregraphs on V .

(2) The game terminates when EGβ
∪ NGβ

= [V ]2, i.e UGβ
= ∅.

(3) Let G0 = 〈V , ∅, ∅〉.
(4) EGα

=
⋃
ζ<α EGζ

and NGα
=
⋃
ζ<α NGα

for limit α.
(5) If α = γ + 1, Seeker picks an undetermined pair eγ ∈ UGγ

, Hider
decides if eγ is an edge, or a nonedge in Gα,

(6) Hider wins iff for each α < βif PGα
∈ I, then graph 〈V ,EGα

〉
does not have property R, but graph 〈V ,EGα

∪ UGα
〉 has

property R for each α < β.
A graph property R is I-elusive on a set V iff Hider has a winning
strategy in the game EV ,I,R .
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The ideal ISF of square-free sets.

ISF = {F ⊂ [ω]2 : ¬∃W ∈ [ω]ω [W ]2 ⊂ F}.

Theorem
The property G is a scorpion graph is not ISF -elusive.

sting tail body

Theorem
(1) For each natural number n the monotone graph property Rn

" degG(v) ≥ n for each vertex v"

is ISF -elusive on the vertex set ω.

(2) For each natural number n the monotone graph property Cn

" cG(v) ≥ n for each vertex v"

is ISF -elusive on the vertex set ω.
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The property degG(v) ≥ n for each vertex v is ISF -elusive on the vertex set ω

• If F ⊂ [ω]2 and j ∈ ω, let

degF (j) = |{i ∈ ω : {i , j} ∈ F}|

deg<F (j) = |{i < j : {i , j} ∈ F}|

• The strategy of the Hider: in the αth step, if the Seeker asks the
undetermined pair eα = {i , j} with i < j < ω, then the Hider says
"yes" iff either

(a) i < n and degEα
(i) < n, or j < n and degEα

(j) < n

or

(b) degEα
(j) + deg<Uα

(j) = n.

What about uncountable vertex sets?
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G contains K1,n

We do not know if the property G contains K1,n is elusive or not.

Theorem
(1) For each natural number n ≥ 2 the monotone graph property K1,n

" G contains K1,n"

is In-elusive on the vertex set ω, where

In = {E ⊂ [ω]2 : ¬∃B ∈ [ω]n E ∪ [B]2 = [ω]2}.
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The property G contains K1,n is In-elusive.

• Hider says "yes" for eα = {i , j} iff degGα
(i), degGα

(j) < n − 1

• Gβ does not contain K1,n.

• Fix α < β and assume that dEα∪Uα
(v) ≤ n − 1 for each v ∈ ω.

• A = {v ∈ ω : dEα
(v) = n − 1} and B = {v ∈ ω : dEα

(v) ≤ n − 2}.

• Nα ∩ [B]2 = ∅
• |B| ≤ n.

Otherwise dEα∪Uα
(b) ≥ |B| − 1 ≥ n for b ∈ B).

• [A, ω] ⊂ Pα
(Otherwise ){i , j} ∈ Uα ∩ [A, ω] with i ∈ A implies dEα∪Uα

(i) ≥ n.

• Pα ∪ [B]2 = [ω]2 and so Pα /∈ In.
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Problem
Decide if the the following property are elusive or not:

• G contains P3

• G contains K`
• G is connected

Find the right AKR-style statement/conjecture for infinite graphs
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