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finite combinatorics, theoretical computer science
G is a graph, P is property of graph,

Does G have property P?

We know the vertex set V of G.

We do not know the edge set E of G.

We can ask questions of the form "is there an edge between
vertices x and y ?”

What is the minimum of the number of questions we need in the
worst case?

Need assumptions:
1. P is a non-trivial property

2. Pis a graph property (i.e. preserved by isomorphism)
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A bold conjecture

® Pis a non-trivial graph property. V is a (finite) vertex set.

e Test this property by asking questions of the form " is there an
edge between vertices x and y?"

e What is the minimal number of such questions in the worst case?

Definition

Let 11(P, n) be the minimal number of such questions in the worst
case when |V|=n

A bold conjecture (Aanderaa-Rosenberg)

w(P,n) = (3) for any non-trivial graph property P and n € w.
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A counterexample

Theorem (Best,Boas, Lenstra)

There is a non-trivial graph property such that (P, n) < (3).
Property P,:

V has a partition V = {u} U {v; : i < n—4} U {xo, X1, X2} such that

® degg(u)=n—4
® degg(vi)=1anduv;e Efori<n—4
An algoritm for the Seeker:

e divide V into two large pieces: n = Ag U A;. (|Ai| > 6)

Ask all the edges between Ay and A;. We know wu.

Ask all the pairs which contains u. We know the partition.

Ask all the pairs v;v; and v;xx. We know if G has property P,.

Thereis k < 2 and i # j < 3 such that x;, x; € Ax. We did not
asked x;x;.
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Conjecture

If P is a non-trivial graph property and n € w, then u(P, n) = Q(n?)
(i.e. u(P,n) > ¢ - n? for some ¢ > 0).

Definition
A graph G = (V, E) is a scorpion iff G has 3 special vertices, called
the sting, the tail, and the body:

e the sting is connected only to the tail,
e the tail is connected only to the sting and the body,

® and the body is connected to all vertices except the sting.

sting tail body E

Theorem (Best,Boas, Lenstra)

There is an algorithm using only O(n) questions to determine if G is a
scorpion.



More modest conjectures



More modest conjectures

Definition
A property P is monotone if it remains true when edges are added.



More modest conjectures

Definition
A property P is monotone if it remains true when edges are added.

Conjecture (Aanderaa-Rosenberg)
If P is a monotone, non-trivial graph property, then u(P, n) = Q(n?)
(i.e. (P, n) > ¢ - n? for some ¢ > 0).



More modest conjectures

Definition
A property P is monotone if it remains true when edges are added.

Conjecture (Aanderaa-Rosenberg)

If P is a monotone, non-trivial graph property, then u(P, n) = Q(n?)
(i.e. (P, n) > ¢ - n? for some ¢ > 0).

Theorem (Rivest and Vuillemin)
The Anderaa-Rosenberg conjecture holds.



More modest conjectures

Definition
A property P is monotone if it remains true when edges are added.

Conjecture (Aanderaa-Rosenberg)
If P is a monotone, non-trivial graph property, then u(P, n) = Q(n?)
(i.e. (P, n) > ¢ - n? for some ¢ > 0).

Theorem (Rivest and Vuillemin)
The Anderaa-Rosenberg conjecture holds.

Conjecture (Aanderaa—Karp—Rosenberg)
If P is a monotone, non-trivial graph property, then (P, n) = ('2’)



More modest conjectures

Definition
A property P is monotone if it remains true when edges are added.

Conjecture (Aanderaa-Rosenberg)
If P is a monotone, non-trivial graph property, then u(P, n) = Q(n?)
(i.e. (P, n) > ¢ - n? for some ¢ > 0).

Theorem (Rivest and Vuillemin)
The Anderaa-Rosenberg conjecture holds.

Conjecture (Aanderaa—Karp—Rosenberg)
If P is a monotone, non-trivial graph property, then (P, n) = ('2’)

Definition
A property P is elusive if (P, n) = (3).
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An open problem

Conjecture (Aanderaa—Karp—Rosenberg)
If P is a monotone, non-trivial graph property, then P is elusive.

Theorem (Bollobas)
The property "G contains Ky," is elusive.

Theorem (Kahn, Sacks and Sturtevant)
If P is a monotone, non-trivial graph property, then p(P,n) = ('2’)
provided that n is a prime power.

Theorem (Yao)

If P is a monotone, non-trivial graph property, then P is elusive on the
bipartite graphs.
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Basic definition

Atriple G = (V,E,N) is an pregraphs iff EUN c [V]® and
ENnN=0.

V is the set of vertices,

E is the set of edges, and

N is the set of nonedges,

P = E U N is the set of determined pairs of G, and
U =[V]?\ Pis the set of undetermined pairs of G.
minG=(V,E)and maxG = (V,EU U).
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Definition

Let R be a monotone graph property and V be a vertex set.
Define the game Ey r between two players, the Seeker and the
Hider, as follows:

1) They construct a sequence (G, : « < 3) of pregraphs on V.
) The game terminates when Eg, U Ng, = [VI?, i.e Ug, = 0.
) Let Go = (V,0,0).
4) Eg, =U¢<o Ec. @nd Ng, = U, ., Ng, for limit c..

)

If a = v + 1, the Seeker picks an undetermined pair e, € Ug_,
the Hider decides if e, is an edge, or a nonedge in G,,,

(6) the Hider wins iff the graph (V, Eg_) does not have property R,
but graph (V, Eg, U Ug,) has property R for each a < 3.

A graph property R is elusive on a set V iff the Hider has a winning
strategy in the game Ey p.
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J

Proof:

The Hider can win using a following greedy algorithm.

We have a pregraph G, = (V, E., N,) in the ath step and the
Seeker selected the pair e,,.

If (V,E,U{e,}) is cycle-free, then Hider declares that e, is an
edge,i.e. E,1 = E,U{e,}.

Otherwise e, will be a nonedge.
Assume that the game terminates after g turns.
Claim 1. For each a < g the graph G,, is cycle-free.

Claim 2. If G, is connected and Ug, # 0, then max G,, contains
acycle.

Claim 3. If G, is not connected then max G, contains a triangle.
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A naive conjecture
Naive conjecture: Every monotone graph property is elusive on
every infinite vertex set.
If Ris a monotone graph property such that

for each graph G= (V. E) and e € E,

the graph G has property R iff (V,E \ {e}) has property R (x)
then the Seeker has a trivial winning strategy:

e they enumerates [V]° as (e, : o < 8), and

¢ they picks e, in the ath step.

® (V,Eg) has property Riff (V, Eg U {eg}) has property R.

¢ So the Seeker wins.
The property " every vertex has infinite degree" is clearly monotone

and has property ().

Revised Naive conjecture: Every "natural”” monotone graph
property is elusive on every infinite vertex set.
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Theorem
For each natural number n and for each infinite set V the monotone
graph property Ry

"degs(v) > n for each vertex v"”
is not elusive on V.

Theorem
For each natural number n and for each infinite set V the monotone
graph property Cp,

"the connected components have size at least n"”

is not elusive on V.

Actually, the Seeker has winning strategies in both cases.
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Let R be a monotone graph property and let H = (V, F) be a graph.
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Restriction on edges

Definition

Let R be a monotone graph property and let H = (V, F) be a graph.
Define the game En g between two players, Seeker and Hider, as
follows:

(1) They construct a sequence (G,, : « < ) of pregraphs on V.

(2) The game terminates When’ Eg, UNg, = F ‘

(3) Let Gy = (V,0,0).
(4) Ea, =U¢<q Ea, @nd Ng, = U, Ng, for limit cv.

(5) Ifa =~ + 1, Seeker picks an undetermined pair
’ e, € F\ (Eg, UNg, )|, Hider decides if e, is an edge, or a
nonedge in G,

(6) Hider wins iff the graph (V, Eg_) does not have property R, but
graph| (V,F\ Ng,) | has property R for each o < §.

R is H-elusive iff Hider has a winning strategy inEy p.
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Two negative theorems

Definition

LetH = (V, E*) be agraph. A vertex set L C V is a covering set iff
foreachv € V\ L thereis ac L with{v,a} € E*.

We say that G is braided iff for each W < [V]<!"! there is a finite
covering set L € [V \ W]=“.

Definition
Define the Cantor graph C as follows: its vertex set is the set of all
finite 0-1 sequences, and {s,t} is an edge iffs C tort C s.

Proposition

Given an infinite cardinal x, the infinite complete graph K,., the
balanced bipartite graph K, .., the Turan graphs T(x, n) for n € w, and
the Cantor graph C are braided.



Two negative theorems

Theorem
For each natural number n and for each infinite braided graph
H = (V, E*) the monotone graph property R,

"degg(v) > n for each vertex v"
is not H-elusive.

Theorem
For each natural number n and for each infinite braided graph
H = (V. E*) the monotone graph property Cp,

" the connected components have size at least n"

is not H-elusive.
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A positive result

Theorem
The monotone graph property R

“the graph contains a cycle ”

is elusive for any vertex set V.

The property R is Ky-elusive for any vertex set V, where Ky is the
complete graph on V.

Theorem
Let H be a graph. The following two statements are equivalent:

e FEvery connected component of H is 2-edge connected,

® the monotone graph property R
“the graph contains a cycle ”

is H-elusive.
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An infinite version of the Aanderaa-Rosenberg conjecture

Theorem
If P is a monotone, non-trivial graph property, then (P, n) = Q(n?)
(i.e. (P, n) > ¢ - n? for some ¢ > 0).

What about infinite graph?

"The seeker should ask lots of edges™
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An infinite version of the Aanderaa-Rosenberg conjecture

Definition

Let R be a monotone graph property and V be a vertex set and

T c P(|V]?) be downwards closed.

Define the game E\ 1 r between two players, Seeker and Hider, as
follows:

(1) They construct a sequence (G,, : « < ) of pregraphs on V.
2) The game terminates when Eg, U Ng, = [V] i.e Ug, = 0.
3) Let Gy = (V,0,0).
4) Eg, =U¢<o Ec. and Ng, = U, Na, for limit c.
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An infinite version of the Aanderaa-Rosenberg conjecture

Definition

Let R be a monotone graph property and V be a vertex set and

T c P(|V]?) be downwards closed.

Define the game E\ 1 r between two players, Seeker and Hider, as
follows:

(1) They construct a sequence (G,, : « < ) of pregraphs on V.
2) The game terminates when Eg, U Ng, = [V]2, i.e Ug, = 0.
3) Let Gy = (V,0,0).

4) Ea, = U¢<o Ea. @and Ng, = U, Na, for limit c.

5) Ifa =~ +1, Seeker picks an undetermined pair e, € Ug,, Hider
decides if e, is an edge, or a nonedge in G,,

(6) Hider wins iff for each o < pif Pg_, € I, then graph (V, Eg,)

does not have property R, but graph (V, Eg, U Ug,,) has

property R for each o < 3.

()
(3)
(4)
(5)



An infinite version of the Aanderaa-Rosenberg conjecture

Definition

Let R be a monotone graph property and V be a vertex set and

T c P(|V]?) be downwards closed.

Define the game E\ 1 r between two players, Seeker and Hider, as
follows:

(1) They construct a sequence (G,, : « < ) of pregraphs on V.
) The game terminates when Eg, U Ng, = [V]*, i.e Ug, = 0.
) Let Go = (V,0,0).
4) Eg, =U¢<o Ec. and Ng, = U, Na, for limit c.
) Ifa =~ +1, Seeker picks an undetermined pair e, € Ug, , Hider
decides if e, is an edge, or a nonedge in G,,

(6) Hider wins iff for each o < pif Pg_, € I, then graph (V, Eg,)
does not have property R, but graph (V, Eg, U Ug,,) has
property R for each o < 3.

A graph property R is Z-elusive on a set V iff Hider has a winning
strategy in the game Ey 1 g.
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The ideal Zg¢ of square-free sets.
Tsr={F C [w]® : =3W € [w]” [W]® C F}.
Theorem

The property G is a scorpion graph is not Tse-elusive.

sting tail body E

Theorem
(1) For each natural number n the monotone graph property R,

"degg(v) > n for each vertex v"
is Tse-elusive on the vertex set w.

(2) For each natural number n the monotone graph property C,

"cg(v) > n for each vertex v"
is Zsr-elusive on the vertex set w.
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The property degs(v) > n for each vertex v is Zge-elusive on the vertex set w

° If FC[wfandj € w, let
degr(/) = {i e w: {i,j} € F}
degz () = [{i <j: {i.j} € F}|

¢ The strategy of the Hider: in the ath step, if the Seeker asks the
undetermined pair e, = {/,j} with i < j < w, then the Hider says
"yes" iff either

(@) i< nanddegg (i) <n,orj<nanddegg (j)<n
or
(b) degg_ (j) + degg, (j) = n.



The property degs(v) > n for each vertex v is Zge-elusive on the vertex set w

° If FC[wfandj € w, let
degr(/) = {i e w: {i,j} € F}
degz () = [{i <j: {i.j} € F}|

¢ The strategy of the Hider: in the ath step, if the Seeker asks the
undetermined pair e, = {/,j} with i < j < w, then the Hider says
"yes" iff either

(@) i< nanddegg (i) <n,orj<nanddegg (j)<n
or
(b) degg, (j) + degg, (/) = n.
What about uncountable vertex sets?
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G contains K

We do not know if the property G contains Kj , is elusive or not.

Theorem
(1) For each natural number n > 2 the monotone graph property Ki ,

"G contains Ki "

is Th-elusive on the vertex set w, where

T, ={E C[w]?: 3B € [w]" EU[BJ = [w]*}.
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The property G contains K , is Z,-elusive.

* Hider says "yes" for e, = {/,j} iff degg_(/),degg (j) < n—1

G does not contain K p.

Fix a < g and assume that de_yu, (v) < n—1foreach v € w.
A={vew:de (v)=n—-1}and B={vew:de (v)<n-2}.
N,N[BF =0

|B| < n.
Otherwise de_uu, (b) > |B| —1 > nfor b € B).

° [Aw]CP,
(Otherwise ){i,j} € U, N [A,w] with i € Aimplies de_uu, () > n.

e P,U [B]2 = [w]2 and so P, ¢ Z,.
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Problem
Decide if the the following property are elusive or not:

e (G contains P;
° G contains K,
e G is connected

Find the right AKR-style statement/conjecture for infinite graphs



