Elusive graph properties

Lajos Soukup

Alfréd Rényi Institute of Mathematics
http://www.renyi.hu/~soukup
World Logic Day 2022

Joint work with with Tamás Csernák

Elusive properties of infinite graphs, arxiv note

The problem

The problem

- finite combinatorics, theoretical computer science

The problem

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,

The problem

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,
- Does G have property P ?

The problem

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,
- Does G have property P ?
- We know the vertex set V of G.

The problem

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,
- Does G have property P ?
- We know the vertex set V of G.
- We do not know the edge set E of G.

The problem

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,
- Does G have property P ?
- We know the vertex set V of G.
- We do not know the edge set E of G.
- We can ask questions of the form "is there an edge between vertices x and y ?"

The problem

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,
- Does G have property P ?
- We know the vertex set V of G.
- We do not know the edge set E of G.
- We can ask questions of the form "is there an edge between vertices x and y ?"
- What is the minimum of the number of questions we need in the worst case?

The problem

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,
- Does G have property P ?
- We know the vertex set V of G.
- We do not know the edge set E of G.
- We can ask questions of the form "is there an edge between vertices x and y ?"
- What is the minimum of the number of questions we need in the worst case?
- Need assumptions:

The problem

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,
- Does G have property P ?
- We know the vertex set V of G.
- We do not know the edge set E of G.
- We can ask questions of the form "is there an edge between vertices x and y ?"
- What is the minimum of the number of questions we need in the worst case?
- Need assumptions:
- 1. P is a non-trivial property

The problem

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,
- Does G have property P ?
- We know the vertex set V of G.
- We do not know the edge set E of G.
- We can ask questions of the form "is there an edge between vertices x and y ?"
- What is the minimum of the number of questions we need in the worst case?
- Need assumptions:
- 1. P is a non-trivial property
- 2. P is a graph property (i.e. preserved by isomorphism)

A bold conjecture

- P is a non-trivial graph property. V is a (finite) vertex set.
- Test this property by asking questions of the form " is there an edge between vertices x and y ?"
- What is the minimal number of such questions in the worst case?

A bold conjecture

- P is a non-trivial graph property. V is a (finite) vertex set.
- Test this property by asking questions of the form " is there an edge between vertices x and y ?"
- What is the minimal number of such questions in the worst case?

Definition

Let $\mu(P, n)$ be the minimal number of such questions in the worst case when $|V|=n$

A bold conjecture

- P is a non-trivial graph property. V is a (finite) vertex set.
- Test this property by asking questions of the form " is there an edge between vertices x and y ?"
- What is the minimal number of such questions in the worst case?

Definition

Let $\mu(P, n)$ be the minimal number of such questions in the worst case when $|V|=n$

A bold conjecture (Aanderaa-Rosenberg)
$\mu(P, n)=\binom{n}{2}$ for any non-trivial graph property P and $n \in \omega$.

A counterexample

A counterexample

Theorem (Best,Boas, Lenstra)
There is a non-trivial graph property such that $\mu(P, n)<\binom{n}{2}$.

A counterexample

Theorem (Best,Boas, Lenstra)
There is a non-trivial graph property such that $\mu(P, n)<\binom{n}{2}$.
Property P_{n} :
V has a partition $V=\{u\} \cup\left\{v_{i}: i<n-4\right\} \cup\left\{x_{0}, x_{1}, x_{2}\right\}$ such that

A counterexample

Theorem (Best,Boas, Lenstra)
There is a non-trivial graph property such that $\mu(P, n)<\binom{n}{2}$.
Property P_{n} :
V has a partition $V=\{u\} \cup\left\{v_{i}: i<n-4\right\} \cup\left\{x_{0}, x_{1}, x_{2}\right\}$ such that

- $\operatorname{deg}_{G}(u)=n-4$

A counterexample

Theorem (Best,Boas, Lenstra)
There is a non-trivial graph property such that $\mu(P, n)<\binom{n}{2}$.
Property P_{n} :
V has a partition $V=\{u\} \cup\left\{v_{i}: i<n-4\right\} \cup\left\{x_{0}, x_{1}, x_{2}\right\}$ such that

- $\operatorname{deg}_{G}(u)=n-4$
- $\operatorname{deg}_{G}\left(v_{i}\right)=1$ and $u v_{i} \in E$ for $i<n-4$

A counterexample

Theorem (Best,Boas, Lenstra)
There is a non-trivial graph property such that $\mu(P, n)<\binom{n}{2}$.
Property P_{n} :
V has a partition $V=\{u\} \cup\left\{v_{i}: i<n-4\right\} \cup\left\{x_{0}, x_{1}, x_{2}\right\}$ such that

- $\operatorname{deg}_{G}(u)=n-4$
- $\operatorname{deg}_{G}\left(v_{i}\right)=1$ and $u v_{i} \in E$ for $i<n-4$

An algoritm for the Seeker:

A counterexample

Theorem (Best,Boas, Lenstra)
There is a non-trivial graph property such that $\mu(P, n)<\binom{n}{2}$.
Property P_{n} :
V has a partition $V=\{u\} \cup\left\{v_{i}: i<n-4\right\} \cup\left\{x_{0}, x_{1}, x_{2}\right\}$ such that

- $\operatorname{deg}_{G}(u)=n-4$
- $\operatorname{deg}_{G}\left(v_{i}\right)=1$ and $u v_{i} \in E$ for $i<n-4$

An algoritm for the Seeker:

- divide V into two large pieces: $n=A_{0} \cup A_{1} .\left(\left|A_{i}\right| \geq 6\right)$

A counterexample

Theorem (Best,Boas, Lenstra)
There is a non-trivial graph property such that $\mu(P, n)<\binom{n}{2}$.
Property P_{n} :
V has a partition $V=\{u\} \cup\left\{v_{i}: i<n-4\right\} \cup\left\{x_{0}, x_{1}, x_{2}\right\}$ such that

- $\operatorname{deg}_{G}(u)=n-4$
- $\operatorname{deg}_{G}\left(v_{i}\right)=1$ and $u v_{i} \in E$ for $i<n-4$

An algoritm for the Seeker:

- divide V into two large pieces: $n=A_{0} \cup A_{1} .\left(\left|A_{i}\right| \geq 6\right)$
- Ask all the edges between A_{0} and A_{1}. We know u.

A counterexample

Theorem (Best,Boas, Lenstra)
There is a non-trivial graph property such that $\mu(P, n)<\binom{n}{2}$.
Property P_{n} :
V has a partition $V=\{u\} \cup\left\{v_{i}: i<n-4\right\} \cup\left\{x_{0}, x_{1}, x_{2}\right\}$ such that

- $\operatorname{deg}_{G}(u)=n-4$
- $\operatorname{deg}_{G}\left(v_{i}\right)=1$ and $u v_{i} \in E$ for $i<n-4$

An algoritm for the Seeker:

- divide V into two large pieces: $n=A_{0} \cup A_{1} .\left(\left|A_{i}\right| \geq 6\right)$
- Ask all the edges between A_{0} and A_{1}. We know u.
- Ask all the pairs which contains u. We know the partition.

A counterexample

Theorem (Best,Boas, Lenstra)
There is a non-trivial graph property such that $\mu(P, n)<\binom{n}{2}$.
Property P_{n} :
V has a partition $V=\{u\} \cup\left\{v_{i}: i<n-4\right\} \cup\left\{x_{0}, x_{1}, x_{2}\right\}$ such that

- $\operatorname{deg}_{G}(u)=n-4$
- $\operatorname{deg}_{G}\left(v_{i}\right)=1$ and $u v_{i} \in E$ for $i<n-4$

An algoritm for the Seeker:

- divide V into two large pieces: $n=A_{0} \cup A_{1} .\left(\left|A_{i}\right| \geq 6\right)$
- Ask all the edges between A_{0} and A_{1}. We know u.
- Ask all the pairs which contains u. We know the partition.
- Ask all the pairs $v_{i} v_{j}$ and $v_{i} x_{k}$. We know if G has property P_{n}.

A counterexample

Theorem (Best,Boas, Lenstra)
There is a non-trivial graph property such that $\mu(P, n)<\binom{n}{2}$.
Property P_{n} :
V has a partition $V=\{u\} \cup\left\{v_{i}: i<n-4\right\} \cup\left\{x_{0}, x_{1}, x_{2}\right\}$ such that

- $\operatorname{deg}_{G}(u)=n-4$
- $\operatorname{deg}_{G}\left(v_{i}\right)=1$ and $u v_{i} \in E$ for $i<n-4$

An algoritm for the Seeker:

- divide V into two large pieces: $n=A_{0} \cup A_{1} .\left(\left|A_{i}\right| \geq 6\right)$
- Ask all the edges between A_{0} and A_{1}. We know u.
- Ask all the pairs which contains u. We know the partition.
- Ask all the pairs $v_{i} v_{j}$ and $v_{i} x_{k}$. We know if G has property P_{n}.
- There is $k<2$ and $i \neq j<3$ such that $x_{i}, x_{j} \in A_{k}$. We did not asked $x_{i} x_{j}$.

More modest conjectures

More modest conjectures

Conjecture If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n)=\Omega\left(n^{2}\right)$ (i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

More modest conjectures

Conjecture
If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n)=\Omega\left(n^{2}\right)$ (i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

Definition
A graph $G=\langle V, E\rangle$ is a scorpion iff G has 3 special vertices, called the sting, the tail, and the body:

More modest conjectures

Conjecture
If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n)=\Omega\left(n^{2}\right)$ (i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

Definition
A graph $G=\langle V, E\rangle$ is a scorpion iff G has 3 special vertices, called the sting, the tail, and the body:

- the sting is connected only to the tail,

More modest conjectures

Conjecture
If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n)=\Omega\left(n^{2}\right)$ (i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

Definition
A graph $G=\langle V, E\rangle$ is a scorpion iff G has 3 special vertices, called the sting, the tail, and the body:

- the sting is connected only to the tail,
- the tail is connected only to the sting and the body,

More modest conjectures

Conjecture
If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n)=\Omega\left(n^{2}\right)$ (i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

Definition
A graph $G=\langle V, E\rangle$ is a scorpion iff G has 3 special vertices, called the sting, the tail, and the body:

- the sting is connected only to the tail,
- the tail is connected only to the sting and the body,
- and the body is connected to all vertices except the sting.

More modest conjectures

Conjecture

If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n)=\Omega\left(n^{2}\right)$ (i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

Definition
A graph $G=\langle V, E\rangle$ is a scorpion iff G has 3 special vertices, called the sting, the tail, and the body:

- the sting is connected only to the tail,
- the tail is connected only to the sting and the body,
- and the body is connected to all vertices except the sting.

More modest conjectures

Conjecture

If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n)=\Omega\left(n^{2}\right)$ (i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

Definition
A graph $G=\langle V, E\rangle$ is a scorpion iff G has 3 special vertices, called the sting, the tail, and the body:

- the sting is connected only to the tail,
- the tail is connected only to the sting and the body,
- and the body is connected to all vertices except the sting.

Theorem (Best,Boas, Lenstra)
There is an algorithm using only $O(n)$ questions to determine if G is a scorpion.

More modest conjectures

More modest conjectures

Definition
A property P is monotone if it remains true when edges are added.

More modest conjectures

Definition

A property P is monotone if it remains true when edges are added.
Conjecture (Aanderaa-Rosenberg)
If P is a monotone, non-trivial graph property, then $\mu(P, n)=\Omega\left(n^{2}\right)$
(i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

More modest conjectures

Definition
A property P is monotone if it remains true when edges are added.
Conjecture (Aanderaa-Rosenberg)
If P is a monotone, non-trivial graph property, then $\mu(P, n)=\Omega\left(n^{2}\right)$
(i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

Theorem (Rivest and Vuillemin)
The Anderaa-Rosenberg conjecture holds.

More modest conjectures

Definition
A property P is monotone if it remains true when edges are added.
Conjecture (Aanderaa-Rosenberg)
If P is a monotone, non-trivial graph property, then $\mu(P, n)=\Omega\left(n^{2}\right)$
(i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

Theorem (Rivest and Vuillemin)
The Anderaa-Rosenberg conjecture holds.
Conjecture (Aanderaa-Karp-Rosenberg)
If P is a monotone, non-trivial graph property, then $\mu(P, n)=\binom{n}{2}$.

More modest conjectures

Definition
A property P is monotone if it remains true when edges are added.
Conjecture (Aanderaa-Rosenberg)
If P is a monotone, non-trivial graph property, then $\mu(P, n)=\Omega\left(n^{2}\right)$
(i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

Theorem (Rivest and Vuillemin)
The Anderaa-Rosenberg conjecture holds.
Conjecture (Aanderaa-Karp-Rosenberg)
If P is a monotone, non-trivial graph property, then $\mu(P, n)=\binom{n}{2}$.
Definition
A property P is elusive if $\mu(P, n)=\binom{n}{2}$.

An open problem

An open problem

Conjecture (Aanderaa-Karp-Rosenberg)
If P is a monotone, non-trivial graph property, then P is elusive.

An open problem

Conjecture (Aanderaa-Karp-Rosenberg)
If P is a monotone, non-trivial graph property, then P is elusive.
Theorem (Bollobás)
The property " G contains K_{m} " is elusive.

An open problem

Conjecture (Aanderaa-Karp-Rosenberg)
If P is a monotone, non-trivial graph property, then P is elusive.
Theorem (Bollobás)
The property " G contains K_{m} " is elusive.
Theorem (Kahn, Sacks and Sturtevant)
If P is a monotone, non-trivial graph property, then $\mu(P, n)=\binom{n}{2}$ provided that n is a prime power.

An open problem

Conjecture (Aanderaa-Karp-Rosenberg)
If P is a monotone, non-trivial graph property, then P is elusive.
Theorem (Bollobás)
The property " G contains K_{m} " is elusive.
Theorem (Kahn, Sacks and Sturtevant)
If P is a monotone, non-trivial graph property, then $\mu(P, n)=\binom{n}{2}$ provided that n is a prime power.

Theorem (Yao)
If P is a monotone, non-trivial graph property, then P is elusive on the bipartite graphs.

What about infinite graphs?

Basic definition

Basic definition

- A triple $G=\langle V, E, N\rangle$ is an pregraphs iff $E \cup N \subset[V]^{2}$ and $E \cap N=\emptyset$.

Basic definition

- A triple $G=\langle V, E, N\rangle$ is an pregraphs iff $E \cup N \subset[V]^{2}$ and $E \cap N=\emptyset$.
- V is the set of vertices,

Basic definition

- A triple $G=\langle V, E, N\rangle$ is an pregraphs iff $E \cup N \subset[V]^{2}$ and $E \cap N=\emptyset$.
- V is the set of vertices,
- E is the set of edges, and

Basic definition

- A triple $G=\langle V, E, N\rangle$ is an pregraphs iff $E \cup N \subset[V]^{2}$ and $E \cap N=\emptyset$.
- V is the set of vertices,
- E is the set of edges, and
- N is the set of nonedges,

Basic definition

- A triple $G=\langle V, E, N\rangle$ is an pregraphs iff $E \cup N \subset[V]^{2}$ and $E \cap N=\emptyset$.
- V is the set of vertices,
- E is the set of edges, and
- N is the set of nonedges,
- $P=E \cup N$ is the set of determined pairs of G, and

Basic definition

- A triple $G=\langle V, E, N\rangle$ is an pregraphs iff $E \cup N \subset[V]^{2}$ and $E \cap N=\emptyset$.
- V is the set of vertices,
- E is the set of edges, and
- N is the set of nonedges,
- $P=E \cup N$ is the set of determined pairs of G, and
- $U=[V]^{2} \backslash P$ is the set of undetermined pairs of G.

Basic definition

- A triple $G=\langle V, E, N\rangle$ is an pregraphs iff $E \cup N \subset[V]^{2}$ and $E \cap N=\emptyset$.
- V is the set of vertices,
- E is the set of edges, and
- N is the set of nonedges,
- $P=E \cup N$ is the set of determined pairs of G, and
- $U=[V]^{2} \backslash P$ is the set of undetermined pairs of G.
- $\min G=\langle V, E\rangle$ and $\max G=\langle V, E \cup U\rangle$.

Basic definition

Basic definition

Definition
Let R be a monotone graph property and V be a vertex set.

Basic definition

Definition
Let R be a monotone graph property and V be a vertex set. Define the game $\mathbb{E}_{V, R}$ between two players, the Seeker and the Hider, as follows:

Basic definition

Definition

Let R be a monotone graph property and V be a vertex set. Define the game $\mathbb{E}_{V, R}$ between two players, the Seeker and the Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.

Basic definition

Definition

Let R be a monotone graph property and V be a vertex set. Define the game $\mathbb{E}_{V, R}$ between two players, the Seeker and the Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=[V]^{2}$, i.e $U_{G_{\beta}}=\emptyset$.

Basic definition

Definition

Let R be a monotone graph property and V be a vertex set. Define the game $\mathbb{E}_{V, R}$ between two players, the Seeker and the Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=[V]^{2}$, i.e $U_{G_{\beta}}=\emptyset$.
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.

Basic definition

Definition

Let R be a monotone graph property and V be a vertex set. Define the game $\mathbb{E}_{V, R}$ between two players, the Seeker and the Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=[V]^{2}$, i.e $U_{G_{\beta}}=\emptyset$.
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.
(4) $E_{G_{\alpha}}=\bigcup_{\zeta<\alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}}=\bigcup_{\zeta<\alpha} N_{G_{\alpha}}$ for limit α.

Basic definition

Definition

Let R be a monotone graph property and V be a vertex set. Define the game $\mathbb{E}_{V, R}$ between two players, the Seeker and the Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=[V]^{2}$, i.e $U_{G_{\beta}}=\emptyset$.
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.
(4) $E_{G_{\alpha}}=\bigcup_{\zeta<\alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}}=\bigcup_{\zeta<\alpha} N_{G_{\alpha}}$ for limit α.
(5) If $\alpha=\gamma+1$, the Seeker picks an undetermined pair $e_{\gamma} \in U_{G_{\gamma}}$, the Hider decides if e_{γ} is an edge, or a nonedge in G_{α},

Basic definition

Definition

Let R be a monotone graph property and V be a vertex set.
Define the game $\mathbb{E}_{V, R}$ between two players, the Seeker and the Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=[V]^{2}$, i.e $U_{G_{\beta}}=\emptyset$.
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.
(4) $E_{G_{\alpha}}=\bigcup_{\zeta<\alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}}=\bigcup_{\zeta<\alpha} N_{G_{\alpha}}$ for limit α.
(5) If $\alpha=\gamma+1$, the Seeker picks an undetermined pair $e_{\gamma} \in U_{G_{\gamma}}$, the Hider decides if e_{γ} is an edge, or a nonedge in G_{α},
(6) the Hider wins iff the graph $\left\langle V, E_{G_{\alpha}}\right\rangle$ does not have property R, but graph $\left\langle V, E_{G_{\alpha}} \cup U_{G_{\alpha}}\right\rangle$ has property R for each $\alpha<\beta$.

Basic definition

Definition

Let R be a monotone graph property and V be a vertex set.
Define the game $\mathbb{E}_{V, R}$ between two players, the Seeker and the Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=[V]^{2}$, i.e $U_{G_{\beta}}=\emptyset$.
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.
(4) $E_{G_{\alpha}}=\bigcup_{\zeta<\alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}}=\bigcup_{\zeta<\alpha} N_{G_{\alpha}}$ for limit α.
(5) If $\alpha=\gamma+1$, the Seeker picks an undetermined pair $e_{\gamma} \in U_{G_{\gamma}}$, the Hider decides if e_{γ} is an edge, or a nonedge in G_{α},
(6) the Hider wins iff the graph $\left\langle V, E_{G_{\alpha}}\right\rangle$ does not have property R, but graph $\left\langle V, E_{G_{\alpha}} \cup U_{G_{\alpha}}\right\rangle$ has property R for each $\alpha<\beta$.

A graph property R is elusive on a set V iff the Hider has a winning strategy in the game $\mathbb{E}_{V, R}$.

A positive theorem

A positive theorem

Theorem
The monotone graph property R
'the graph contains a cycle "
is elusive for any vertex set V.

The property "the graph contains a cycle " is elusive for any vertex set V.

The property "the graph contains a cycle " is elusive for any vertex set V.

Proof:

The property "the graph contains a cycle " is elusive for any vertex set V.

Proof:

- The Hider can win using a following greedy algorithm.

The property "the graph contains a cycle " is elusive for any vertex set V.

Proof:

- The Hider can win using a following greedy algorithm.
- We have a pregraph $G_{\alpha}=\left\langle V, E_{\alpha}, N_{\alpha}\right\rangle$ in the α th step and the Seeker selected the pair e_{α}.

The property "the graph contains a cycle " is elusive for any vertex set V.

Proof:

- The Hider can win using a following greedy algorithm.
- We have a pregraph $G_{\alpha}=\left\langle V, E_{\alpha}, N_{\alpha}\right\rangle$ in the α th step and the Seeker selected the pair e_{α}.
- If $\left\langle V, E_{\alpha} \cup\left\{\boldsymbol{e}_{\alpha}\right\}\right\rangle$ is cycle-free, then Hider declares that \boldsymbol{e}_{α} is an edge, i.e. $E_{\alpha+1}=E_{\alpha} \cup\left\{e_{\alpha}\right\}$.

The property "the graph contains a cycle " is elusive for any vertex set V.

Proof:

- The Hider can win using a following greedy algorithm.
- We have a pregraph $G_{\alpha}=\left\langle V, E_{\alpha}, N_{\alpha}\right\rangle$ in the α th step and the Seeker selected the pair e_{α}.
- If $\left\langle V, E_{\alpha} \cup\left\{\boldsymbol{e}_{\alpha}\right\}\right\rangle$ is cycle-free, then Hider declares that \boldsymbol{e}_{α} is an edge, i.e. $E_{\alpha+1}=E_{\alpha} \cup\left\{e_{\alpha}\right\}$.
- Otherwise e_{α} will be a nonedge.

The property "the graph contains a cycle " is elusive for any vertex set V.

Proof:

- The Hider can win using a following greedy algorithm.
- We have a pregraph $G_{\alpha}=\left\langle V, E_{\alpha}, N_{\alpha}\right\rangle$ in the α th step and the Seeker selected the pair e_{α}.
- If $\left\langle V, E_{\alpha} \cup\left\{e_{\alpha}\right\}\right\rangle$ is cycle-free, then Hider declares that e_{α} is an edge, i.e. $E_{\alpha+1}=E_{\alpha} \cup\left\{e_{\alpha}\right\}$.
- Otherwise e_{α} will be a nonedge.
- Assume that the game terminates after β turns.

The property "the graph contains a cycle " is elusive for any vertex set V.

Proof:

- The Hider can win using a following greedy algorithm.
- We have a pregraph $G_{\alpha}=\left\langle V, E_{\alpha}, N_{\alpha}\right\rangle$ in the α th step and the Seeker selected the pair e_{α}.
- If $\left\langle V, E_{\alpha} \cup\left\{e_{\alpha}\right\}\right\rangle$ is cycle-free, then Hider declares that e_{α} is an edge, i.e. $E_{\alpha+1}=E_{\alpha} \cup\left\{e_{\alpha}\right\}$.
- Otherwise e_{α} will be a nonedge.
- Assume that the game terminates after β turns.
- Claim 1. For each $\alpha \leq \beta$ the graph G_{α} is cycle-free.

The property "the graph contains a cycle " is elusive for any vertex set V.

Proof:

- The Hider can win using a following greedy algorithm.
- We have a pregraph $G_{\alpha}=\left\langle V, E_{\alpha}, N_{\alpha}\right\rangle$ in the α th step and the Seeker selected the pair e_{α}.
- If $\left\langle V, E_{\alpha} \cup\left\{e_{\alpha}\right\}\right\rangle$ is cycle-free, then Hider declares that e_{α} is an edge, i.e. $E_{\alpha+1}=E_{\alpha} \cup\left\{e_{\alpha}\right\}$.
- Otherwise e_{α} will be a nonedge.
- Assume that the game terminates after β turns.
- Claim 1. For each $\alpha \leq \beta$ the graph G_{α} is cycle-free.
- Claim 2. If G_{α} is connected and $U_{G_{\alpha}} \neq \emptyset$, then $\max G_{\alpha}$ contains a cycle.

The property "the graph contains a cycle " is elusive for any vertex set V.

Proof:

- The Hider can win using a following greedy algorithm.
- We have a pregraph $G_{\alpha}=\left\langle V, E_{\alpha}, N_{\alpha}\right\rangle$ in the α th step and the Seeker selected the pair e_{α}.
- If $\left\langle V, E_{\alpha} \cup\left\{\boldsymbol{e}_{\alpha}\right\}\right\rangle$ is cycle-free, then Hider declares that \boldsymbol{e}_{α} is an edge, i.e. $E_{\alpha+1}=E_{\alpha} \cup\left\{e_{\alpha}\right\}$.
- Otherwise e_{α} will be a nonedge.
- Assume that the game terminates after β turns.
- Claim 1. For each $\alpha \leq \beta$ the graph G_{α} is cycle-free.
- Claim 2. If G_{α} is connected and $U_{G_{\alpha}} \neq \emptyset$, then $\max G_{\alpha}$ contains a cycle.
- Claim 3. If G_{α} is not connected then $\max G_{\alpha}$ contains a triangle.

A naive conjecture

A naive conjecture

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.

A naive conjecture

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.
If R is a monotone graph property such that
> for each graph $G=\langle V, E\rangle$ and $e \in E$, the graph G has property R iff $\langle V, E \backslash\{e\}\rangle$ has property R
then the Seeker has a trivial winning strategy:

A naive conjecture

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.
If R is a monotone graph property such that
for each graph $G=\langle V, E\rangle$ and $e \in E$, the graph G has property R iff $\langle V, E \backslash\{e\}\rangle$ has property R
then the Seeker has a trivial winning strategy:

- they enumerates $[V]^{2}$ as $\left\langle\boldsymbol{e}_{\alpha}: \alpha \leq \beta\right\rangle$, and

A naive conjecture

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.
If R is a monotone graph property such that
for each graph $G=\langle V, E\rangle$ and $e \in E$,
the graph G has property R iff $\langle V, E \backslash\{e\}\rangle$ has property R
then the Seeker has a trivial winning strategy:

- they enumerates $[V]^{2}$ as $\left\langle\boldsymbol{e}_{\alpha}: \alpha \leq \beta\right\rangle$, and
- they picks e_{α} in the α th step.

A naive conjecture

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.
If R is a monotone graph property such that
for each graph $G=\langle V, E\rangle$ and $e \in E$,
the graph G has property R iff $\langle V, E \backslash\{e\}\rangle$ has property R
then the Seeker has a trivial winning strategy:

- they enumerates $[V]^{2}$ as $\left\langle\boldsymbol{e}_{\alpha}: \alpha \leq \beta\right\rangle$, and
- they picks e_{α} in the α th step.
- $\left\langle V, E_{\beta}\right\rangle$ has property R ff $\left\langle V, E_{\beta} \cup\left\{e_{\beta}\right\}\right\rangle$ has property R.

A naive conjecture

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.
If R is a monotone graph property such that
for each graph $G=\langle V, E\rangle$ and $e \in E$,
the graph G has property R iff $\langle V, E \backslash\{e\}\rangle$ has property R
then the Seeker has a trivial winning strategy:

- they enumerates $[V]^{2}$ as $\left\langle\boldsymbol{e}_{\alpha}: \alpha \leq \beta\right\rangle$, and
- they picks e_{α} in the α th step.
- $\left\langle V, E_{\beta}\right\rangle$ has property R ff $\left\langle V, E_{\beta} \cup\left\{e_{\beta}\right\}\right\rangle$ has property R.
- So the Seeker wins.

A naive conjecture

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.
If R is a monotone graph property such that
for each graph $G=\langle V, E\rangle$ and $e \in E$,
the graph G has property R iff $\langle V, E \backslash\{e\}\rangle$ has property R
then the Seeker has a trivial winning strategy:

- they enumerates $[V]^{2}$ as $\left\langle\boldsymbol{e}_{\alpha}: \alpha \leq \beta\right\rangle$, and
- they picks e_{α} in the α th step.
- $\left\langle V, E_{\beta}\right\rangle$ has property R ff $\left\langle V, E_{\beta} \cup\left\{e_{\beta}\right\}\right\rangle$ has property R.
- So the Seeker wins.

The property " every vertex has infinite degree" is clearly monotone and has property (*).

A naive conjecture

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.
If R is a monotone graph property such that
for each graph $G=\langle V, E\rangle$ and $e \in E$,
the graph G has property R iff $\langle V, E \backslash\{e\}\rangle$ has property R
then the Seeker has a trivial winning strategy:

- they enumerates $[V]^{2}$ as $\left\langle\boldsymbol{e}_{\alpha}: \alpha \leq \beta\right\rangle$, and
- they picks e_{α} in the α th step.
- $\left\langle V, E_{\beta}\right\rangle$ has property R iff $\left\langle V, E_{\beta} \cup\left\{e_{\beta}\right\}\right\rangle$ has property R.
- So the Seeker wins.

The property " every vertex has infinite degree" is clearly monotone and has property (*).

Revised Naive conjecture: Every "natural" monotone graph property is elusive on every infinite vertex set.

Two negative theorems

Two negative theorems

Theorem
For each natural number n and for each infinite set V the monotone graph property R_{n}

$$
" \operatorname{deg}_{G}(v) \geq n \text { for each vertex } v "
$$

is not elusive on V.

Two negative theorems

Theorem
For each natural number n and for each infinite set V the monotone graph property R_{n}

```
"deg}\mp@subsup{G}{(}{}(v)\geqn\mathrm{ for each vertex v"
```

is not elusive on V.
Theorem
For each natural number n and for each infinite set V the monotone graph property C_{n}
'the connected components have size at least n "
is not elusive on V.

Two negative theorems

Theorem

For each natural number n and for each infinite set V the monotone graph property R_{n}

```
"deg}\mp@subsup{G}{(}{}(v)\geqn\mathrm{ for each vertex v"
```

is not elusive on V.
Theorem
For each natural number n and for each infinite set V the monotone graph property C_{n}
'the connected components have size at least n "
is not elusive on V.

Actually, the Seeker has winning strategies in both cases.

Restriction on edges

Restriction on edges

Definition

Let R be a monotone graph property and let $H=\langle V, F\rangle$ be a graph.

Restriction on edges

Definition

Let R be a monotone graph property and let $H=\langle V, F\rangle$ be a graph. Define the game $\mathbb{E}_{\boldsymbol{H}, R}$ between two players, Seeker and Hider, as follows:

Restriction on edges

Definition

Let R be a monotone graph property and let $H=\langle V, F\rangle$ be a graph. Define the game $\mathbb{E}_{\boldsymbol{H}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.

Restriction on edges

Definition

Let R be a monotone graph property and let $H=\langle V, F\rangle$ be a graph. Define the game $\mathbb{E}_{\boldsymbol{H}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=F$

Restriction on edges

Definition

Let R be a monotone graph property and let $H=\langle V, F\rangle$ be a graph. Define the game $\mathbb{E}_{\boldsymbol{H}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=F$
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.

Restriction on edges

Definition

Let R be a monotone graph property and let $H=\langle V, F\rangle$ be a graph. Define the game $\mathbb{E}_{\boldsymbol{H}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=F$
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.
(4) $E_{G_{\alpha}}=\bigcup_{\zeta<\alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}}=\bigcup_{\zeta<\alpha} N_{G_{\alpha}}$ for limit α.

Restriction on edges

Definition

Let R be a monotone graph property and let $H=\langle V, F\rangle$ be a graph. Define the game $\mathbb{E}_{\boldsymbol{H}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=F$
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.
(4) $E_{G_{\alpha}}=\bigcup_{\zeta<\alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}}=\bigcup_{\zeta<\alpha} N_{G_{\alpha}}$ for limit α.
(5) If $\alpha=\gamma+1$, Seeker picks an undetermined pair $e_{\gamma} \in F \backslash\left(E_{G_{\gamma}} \cup N_{G_{\gamma}}\right)$, Hider decides if e_{γ} is an edge, or a nonedge in G_{α},

Restriction on edges

Definition

Let R be a monotone graph property and let $H=\langle V, F\rangle$ be a graph. Define the game $\mathbb{E}_{\boldsymbol{H}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=F$.
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.
(4) $E_{G_{\alpha}}=\bigcup_{\zeta<\alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}}=\bigcup_{\zeta<\alpha} N_{G_{\alpha}}$ for limit α.
(5) If $\alpha=\gamma+1$, Seeker picks an undetermined pair $e_{\gamma} \in F \backslash\left(E_{G_{\gamma}} \cup N_{G_{\gamma}}\right)$, Hider decides if e_{γ} is an edge, or a nonedge in G_{α},
(6) Hider wins iff the graph $\left\langle V, E_{G_{\alpha}}\right\rangle$ does not have property R, but graph $\left\langle V, F \backslash N_{G_{\alpha}}\right\rangle$ has property R for each $\alpha<\beta$.

Restriction on edges

Definition

Let R be a monotone graph property and let $H=\langle V, F\rangle$ be a graph. Define the game $\mathbb{E}_{\boldsymbol{H}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=F$
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.
(4) $E_{G_{\alpha}}=\bigcup_{\zeta<\alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}}=\bigcup_{\zeta<\alpha} N_{G_{\alpha}}$ for limit α.
(5) If $\alpha=\gamma+1$, Seeker picks an undetermined pair $e_{\gamma} \in F \backslash\left(E_{G_{\gamma}} \cup N_{G_{\gamma}}\right)$, Hider decides if e_{γ} is an edge, or a nonedge in G_{α},
(6) Hider wins iff the graph $\left\langle V, E_{G_{\alpha}}\right\rangle$ does not have property R, but graph $\left\langle V, F \backslash N_{G_{\alpha}}\right\rangle$ has property R for each $\alpha<\beta$.
R is H-elusive iff Hider has a winning strategy in $\mathbb{E}_{V, R}$.

Two negative theorems

Two negative theorems

Definition Let $H=\left\langle V, E^{*}\right\rangle$ be a graph. A vertex set $L \subset V$ is a covering set iff for each $v \in V \backslash L$ there is $a \in L$ with $\{v, a\} \in E^{*}$.

Two negative theorems

Definition

 Let $H=\left\langle V, E^{*}\right\rangle$ be a graph. A vertex set $L \subset V$ is a covering set iff for each $v \in V \backslash L$ there is $a \in L$ with $\{v, a\} \in E^{*}$.We say that G is braided iff for each $W \in[V]^{<|V|}$ there is a finite covering set $L \in[V \backslash W]^{<\omega}$.

Two negative theorems

Definition
Let $H=\left\langle V, E^{*}\right\rangle$ be a graph. A vertex set $L \subset V$ is a covering set iff for each $v \in V \backslash L$ there is $a \in L$ with $\{v, a\} \in E^{*}$.
We say that G is braided iff for each $W \in[V]^{<|V|}$ there is a finite covering set $L \in[V \backslash W]^{<\omega}$.

Definition
Define the Cantor graph C as follows: its vertex set is the set of all finite $0-1$ sequences, and $\{s, t\}$ is an edge iff $s \subset t$ or $t \subset s$.

Two negative theorems

Definition

Let $H=\left\langle V, E^{*}\right\rangle$ be a graph. A vertex set $L \subset V$ is a covering set iff for each $v \in V \backslash L$ there is $a \in L$ with $\{v, a\} \in E^{*}$.
We say that G is braided iff for each $W \in[V]^{<|V|}$ there is a finite covering set $L \in[V \backslash W]^{<\omega}$.

Definition
Define the Cantor graph C as follows: its vertex set is the set of all finite $0-1$ sequences, and $\{s, t\}$ is an edge iff $s \subset t$ or $t \subset s$.

Proposition

Given an infinite cardinal κ, the infinite complete graph K_{κ}, the balanced bipartite graph $K_{\kappa, \kappa}$, the Turan graphs $T(\kappa, n)$ for $n \in \omega$, and the Cantor graph C are braided.

Two negative theorems

Theorem
For each natural number n and for each infinite braided graph $H=\left\langle V, E^{*}\right\rangle$ the monotone graph property R_{n}
$" \operatorname{deg}_{G}(v) \geq n$ for each vertex $v "$
is not H -elusive.
Theorem
For each natural number n and for each infinite braided graph $H=\left\langle V, E^{*}\right\rangle$ the monotone graph property C_{n}
" the connected components have size at least n"
is not H -elusive.

A positive result

A positive result

Theorem
The monotone graph property R

'the graph contains a cycle"

is elusive for any vertex set V.

A positive result

Theorem
The monotone graph property R

'the graph contains a cycle"

is elusive for any vertex set V.
The property R is K_{V}-elusive for any vertex set V, where K_{V} is the complete graph on V.

A positive result

Theorem

The monotone graph property R

'the graph contains a cycle"

is elusive for any vertex set V.
The property R is K_{V}-elusive for any vertex set V, where K_{V} is the complete graph on V.

Theorem
Let H be a graph. The following two statements are equivalent:

A positive result

Theorem

The monotone graph property R

'the graph contains a cycle"

is elusive for any vertex set V.
The property R is K_{V}-elusive for any vertex set V, where K_{V} is the complete graph on V.

Theorem
Let H be a graph. The following two statements are equivalent:

- Every connected component of H is 2-edge connected,

A positive result

Theorem
The monotone graph property R

'the graph contains a cycle"

is elusive for any vertex set V.
The property R is K_{V}-elusive for any vertex set V, where K_{V} is the complete graph on V.

Theorem
Let H be a graph. The following two statements are equivalent:

- Every connected component of H is 2-edge connected,
- the monotone graph property R
" the graph contains a cycle"
is H -elusive.

An infinite version of the Aanderaa-Rosenberg conjecture

An infinite version of the Aanderaa-Rosenberg conjecture

Theorem If P is a monotone, non-trivial graph property, then $\mu(P, n)=\Omega\left(n^{2}\right)$ (i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

An infinite version of the Aanderaa-Rosenberg conjecture

Theorem
If P is a monotone, non-trivial graph property, then $\mu(P, n)=\Omega\left(n^{2}\right)$ (i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

What about infinite graph?

An infinite version of the Aanderaa-Rosenberg conjecture

Theorem
If P is a monotone, non-trivial graph property, then $\mu(P, n)=\Omega\left(n^{2}\right)$ (i.e. $\mu(P, n) \geq c \cdot n^{2}$ for some $c>0$).

What about infinite graph?
"The seeker should ask lots of edges"

An infinite version of the Aanderaa-Rosenberg conjecture

An infinite version of the Aanderaa-Rosenberg conjecture

Definition

Let R be a monotone graph property and V be a vertex set and $\mathcal{I} \subset \mathcal{P}\left([V]^{2}\right)$ be downwards closed.

An infinite version of the Aanderaa-Rosenberg conjecture

Definition

Let R be a monotone graph property and V be a vertex set and $\mathcal{I} \subset \mathcal{P}\left([V]^{2}\right)$ be downwards closed.
Define the game $\mathbb{E}_{V, \mathcal{I}, R}$ between two players, Seeker and Hider, as follows:

An infinite version of the Aanderaa-Rosenberg conjecture

Definition

Let R be a monotone graph property and V be a vertex set and $\mathcal{I} \subset \mathcal{P}\left([V]^{2}\right)$ be downwards closed.
Define the game $\mathbb{E}_{V, \mathcal{I}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.

An infinite version of the Aanderaa-Rosenberg conjecture

Definition

Let R be a monotone graph property and V be a vertex set and $\mathcal{I} \subset \mathcal{P}\left([V]^{2}\right)$ be downwards closed.
Define the game $\mathbb{E}_{V, \mathcal{I}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=[V]^{2}$, i.e $U_{G_{\beta}}=\emptyset$.

An infinite version of the Aanderaa-Rosenberg conjecture

Definition

Let R be a monotone graph property and V be a vertex set and $\mathcal{I} \subset \mathcal{P}\left([V]^{2}\right)$ be downwards closed.
Define the game $\mathbb{E}_{V, \mathcal{I}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=[V]^{2}$, i.e $U_{G_{\beta}}=\emptyset$.
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.

An infinite version of the Aanderaa-Rosenberg conjecture

Definition

Let R be a monotone graph property and V be a vertex set and $\mathcal{I} \subset \mathcal{P}\left([V]^{2}\right)$ be downwards closed.
Define the game $\mathbb{E}_{V, \mathcal{I}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=[V]^{2}$, i.e $U_{G_{\beta}}=\emptyset$.
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.
(4) $E_{G_{\alpha}}=\bigcup_{\zeta<\alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}}=\bigcup_{\zeta<\alpha} N_{G_{\alpha}}$ for limit α.

An infinite version of the Aanderaa-Rosenberg conjecture

Definition

Let R be a monotone graph property and V be a vertex set and $\mathcal{I} \subset \mathcal{P}\left([V]^{2}\right)$ be downwards closed.
Define the game $\mathbb{E}_{V, \mathcal{I}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=[V]^{2}$, i.e $U_{G_{\beta}}=\emptyset$.
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.
(4) $E_{G_{\alpha}}=\bigcup_{\zeta<\alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}}=\bigcup_{\zeta<\alpha} N_{G_{\alpha}}$ for limit α.
(5) If $\alpha=\gamma+1$, Seeker picks an undetermined pair $e_{\gamma} \in U_{G_{\gamma}}$, Hider decides if e_{γ} is an edge, or a nonedge in G_{α},

An infinite version of the Aanderaa-Rosenberg conjecture

Definition

Let R be a monotone graph property and V be a vertex set and $\mathcal{I} \subset \mathcal{P}\left([V]^{2}\right)$ be downwards closed.
Define the game $\mathbb{E}_{V, \mathcal{I}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=[V]^{2}$, i.e $U_{G_{\beta}}=\emptyset$.
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.
(4) $E_{G_{\alpha}}=\bigcup_{\zeta<\alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}}=\bigcup_{\zeta<\alpha} N_{G_{\alpha}}$ for limit α.
(5) If $\alpha=\gamma+1$, Seeker picks an undetermined pair $e_{\gamma} \in U_{G_{\gamma}}$, Hider decides if e_{γ} is an edge, or a nonedge in G_{α},
(6) Hider wins iff for each $\alpha<\beta$ if $P_{G_{\alpha}} \in \mathcal{I}$, then graph $\left\langle V, E_{G_{\alpha}}\right\rangle$ does not have property R, but graph $\left\langle V, E_{G_{\alpha}} \cup U_{G_{\alpha}}\right\rangle$ has property R for each $\alpha<\beta$.

An infinite version of the Aanderaa-Rosenberg conjecture

Definition

Let R be a monotone graph property and V be a vertex set and $\mathcal{I} \subset \mathcal{P}\left([V]^{2}\right)$ be downwards closed.
Define the game $\mathbb{E}_{V, \mathcal{I}, R}$ between two players, Seeker and Hider, as follows:
(1) They construct a sequence $\left\langle G_{\alpha}: \alpha \leq \beta\right\rangle$ of pregraphs on V.
(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}}=[V]^{2}$, i.e $U_{G_{\beta}}=\emptyset$.
(3) Let $G_{0}=\langle V, \emptyset, \emptyset\rangle$.
(4) $E_{G_{\alpha}}=\bigcup_{\zeta<\alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}}=\bigcup_{\zeta<\alpha} N_{G_{\alpha}}$ for limit α.
(5) If $\alpha=\gamma+1$, Seeker picks an undetermined pair $\boldsymbol{e}_{\gamma} \in U_{G_{\gamma}}$, Hider decides if e_{γ} is an edge, or a nonedge in G_{α},
(6) Hider wins iff for each $\alpha<\beta$ if $P_{G_{\alpha}} \in \mathcal{I}$, then graph $\left\langle V, E_{G_{\alpha}}\right\rangle$ does not have property R, but graph $\left\langle V, E_{G_{\alpha}} \cup U_{G_{\alpha}}\right\rangle$ has property R for each $\alpha<\beta$.
A graph property R is \mathcal{I}-elusive on a set V iff Hider has a winning strategy in the game $\mathbb{E}_{V, \mathcal{I}, R}$.

The ideal $\mathcal{I}_{S F}$ of square-free sets.

The ideal $\mathcal{I}_{S F}$ of square-free sets.

$$
\mathcal{I}_{S F}=\left\{F \subset[\omega]^{2}: \neg \exists W \in[\omega]^{\omega}[W]^{2} \subset F\right\} .
$$

The ideal $I_{S F}$ of square-free sets.
$\mathcal{I}_{S F}=\left\{F \subset[\omega]^{2}: \neg \exists W \in[\omega]^{\omega}[W]^{2} \subset F\right\}$.
Theorem
The property G is a scorpion graph is not $\mathcal{I}_{\text {SF }}$-elusive.

The ideal $I_{S F}$ of square-free sets.
$\mathcal{I}_{S F}=\left\{F \subset[\omega]^{2}: \neg \exists W \in[\omega]^{\omega}[W]^{2} \subset F\right\}$.
Theorem
The property G is a scorpion graph is not $\mathcal{I}_{\text {SF }}$-elusive.

The ideal $I_{S F}$ of square-free sets.
$\mathcal{I}_{S F}=\left\{F \subset[\omega]^{2}: \neg \exists W \in[\omega]^{\omega}[W]^{2} \subset F\right\}$.
Theorem
The property G is a scorpion graph is not $\mathcal{I}_{\text {SF }}$-elusive.

Theorem
(1) For each natural number n the monotone graph property R_{n}

$$
" \operatorname{deg}_{G}(v) \geq n \text { for each vertex } v "
$$

is $\mathcal{I}_{\text {SF }}$-elusive on the vertex set ω.

The ideal $I_{S F}$ of square-free sets.
$\mathcal{I}_{S F}=\left\{F \subset[\omega]^{2}: \neg \exists W \in[\omega]^{\omega}[W]^{2} \subset F\right\}$.
Theorem
The property G is a scorpion graph is not $\mathcal{I}_{\text {SF-elusive. }}$

Theorem
(1) For each natural number n the monotone graph property R_{n}

$$
" \operatorname{deg}_{G}(v) \geq n \text { for each vertex } v "
$$

is $\mathcal{I}_{\text {SF }}$-elusive on the vertex set ω.
(2) For each natural number n the monotone graph property C_{n}

$$
" c_{G}(v) \geq n \text { for each vertex } v "
$$

is $\mathcal{I}_{\text {SF }}$-elusive on the vertex set ω.

The property $\operatorname{deg}_{G}(v) \geq n$ for each vertex v is $\mathcal{I}_{S F}$-elusive on the vertex set ω

The property $\operatorname{deg}_{G}(v) \geq n$ for each vertex v is $\mathcal{I}_{S F}$-elusive on the vertex set ω

- If $F \subset[\omega]^{2}$ and $j \in \omega$, let

$$
\begin{aligned}
& \operatorname{deg}_{F}(j)=|\{i \in \omega:\{i, j\} \in F\}| \\
& \operatorname{deg}_{F}^{<}(j)=|\{i<j:\{i, j\} \in F\}|
\end{aligned}
$$

The property $\operatorname{deg}_{G}(v) \geq n$ for each vertex v is $\mathcal{I}_{S F}$-elusive on the vertex set ω

- If $F \subset[\omega]^{2}$ and $j \in \omega$, let

$$
\begin{aligned}
& \operatorname{deg}_{F}(j)=|\{i \in \omega:\{i, j\} \in F\}| \\
& \operatorname{deg}_{F}^{<}(j)=|\{i<j:\{i, j\} \in F\}|
\end{aligned}
$$

- The strategy of the Hider: in the α th step, if the Seeker asks the undetermined pair $e_{\alpha}=\{i, j\}$ with $i<j<\omega$, then the Hider says "yes" iff either

The property $\operatorname{deg}_{G}(v) \geq n$ for each vertex v is $\mathcal{I}_{S F}$-elusive on the vertex set ω

- If $F \subset[\omega]^{2}$ and $j \in \omega$, let

$$
\begin{aligned}
& \operatorname{deg}_{F}(j)=|\{i \in \omega:\{i, j\} \in F\}| \\
& \operatorname{deg}_{F}^{<}(j)=|\{i<j:\{i, j\} \in F\}|
\end{aligned}
$$

- The strategy of the Hider: in the α th step, if the Seeker asks the undetermined pair $e_{\alpha}=\{i, j\}$ with $i<j<\omega$, then the Hider says "yes" iff either

$$
\text { (a) } i<n \text { and } \operatorname{deg}_{E_{\alpha}}(i)<n \text {, or } j<n \text { and } \operatorname{deg}_{E_{\alpha}}(j)<n
$$

The property $\operatorname{deg}_{G}(v) \geq n$ for each vertex v is $\mathcal{I}_{S F}$-elusive on the vertex set ω

- If $F \subset[\omega]^{2}$ and $j \in \omega$, let

$$
\begin{aligned}
& \operatorname{deg}_{F}(j)=|\{i \in \omega:\{i, j\} \in F\}| \\
& \operatorname{deg}_{F}^{<}(j)=|\{i<j:\{i, j\} \in F\}|
\end{aligned}
$$

- The strategy of the Hider: in the α th step, if the Seeker asks the undetermined pair $e_{\alpha}=\{i, j\}$ with $i<j<\omega$, then the Hider says "yes" iff either

$$
\text { (a) } i<n \text { and } \operatorname{deg}_{E_{\alpha}}(i)<n \text {, or } j<n \text { and } \operatorname{deg}_{E_{\alpha}}(j)<n
$$

or

The property $\operatorname{deg}_{G}(v) \geq n$ for each vertex v is $\mathcal{I}_{S F}$-elusive on the vertex set ω

- If $F \subset[\omega]^{2}$ and $j \in \omega$, let

$$
\begin{aligned}
& \operatorname{deg}_{F}(j)=|\{i \in \omega:\{i, j\} \in F\}| \\
& \operatorname{deg}_{F}^{<}(j)=|\{i<j:\{i, j\} \in F\}|
\end{aligned}
$$

- The strategy of the Hider: in the α th step, if the Seeker asks the undetermined pair $e_{\alpha}=\{i, j\}$ with $i<j<\omega$, then the Hider says "yes" iff either
(a) $i<n$ and $\operatorname{deg}_{E_{\alpha}}(i)<n$, or $j<n$ and $\operatorname{deg}_{E_{\alpha}}(j)<n$
or
(b) $\operatorname{deg}_{E_{\alpha}}(j)+\operatorname{deg}{\stackrel{U}{U_{\alpha}}}_{<}(j)=n$.

The property $\operatorname{deg}_{G}(v) \geq n$ for each vertex v is $\mathcal{I}_{S F}$-elusive on the vertex set ω

- If $F \subset[\omega]^{2}$ and $j \in \omega$, let

$$
\begin{aligned}
& \operatorname{deg}_{F}(j)=|\{i \in \omega:\{i, j\} \in F\}| \\
& \operatorname{deg}_{F}^{<}(j)=|\{i<j:\{i, j\} \in F\}|
\end{aligned}
$$

- The strategy of the Hider: in the α th step, if the Seeker asks the undetermined pair $e_{\alpha}=\{i, j\}$ with $i<j<\omega$, then the Hider says "yes" iff either
(a) $i<n$ and $\operatorname{deg}_{E_{\alpha}}(i)<n$, or $j<n$ and $\operatorname{deg}_{E_{\alpha}}(j)<n$
or
(b) $\operatorname{deg}_{E_{\alpha}}(j)+\operatorname{deg}_{U_{\alpha}}^{<}(j)=n$.

What about uncountable vertex sets?

G contains $K_{1, n}$

G contains $K_{1, n}$

We do not know if the property G contains $K_{1, n}$ is elusive or not.

G contains $K_{1, n}$

We do not know if the property G contains $K_{1, n}$ is elusive or not.
Theorem
(1) For each natural number $n \geq 2$ the monotone graph property $K_{1, n}$ " G contains $K_{1, n} "$
is \mathcal{I}_{n}-elusive on the vertex set ω, where

$$
\mathcal{I}_{n}=\left\{E \subset[\omega]^{2}: \neg \exists B \in[\omega]^{n} E \cup[B]^{2}=[\omega]^{2}\right\} .
$$

The property G contains $K_{1, n}$ is \mathcal{I}_{n}-elusive.

The property G contains $K_{1, n}$ is \mathcal{I}_{n}-elusive.

- Hider says "yes" for $\boldsymbol{e}_{\alpha}=\{i, j\}$ iff $\operatorname{deg}_{G_{\alpha}}(i), \operatorname{deg}_{G_{\alpha}}(j)<n-1$

The property G contains $K_{1, n}$ is \mathcal{I}_{n}-elusive.

- Hider says "yes" for $\boldsymbol{e}_{\alpha}=\{i, j\}$ iff $\operatorname{deg}_{G_{\alpha}}(i), \operatorname{deg}_{G_{\alpha}}(j)<n-1$
- G_{β} does not contain $K_{1, n}$.

The property G contains $K_{1, n}$ is \mathcal{I}_{n}-elusive.

- Hider says "yes" for $\boldsymbol{e}_{\alpha}=\{i, j\}$ iff $\operatorname{deg}_{G_{\alpha}}(i), \operatorname{deg}_{G_{\alpha}}(j)<n-1$
- G_{β} does not contain $K_{1, n}$.
- Fix $\alpha<\beta$ and assume that $d_{E_{\alpha} \cup U_{\alpha}}(v) \leq n-1$ for each $v \in \omega$.

The property G contains $K_{1, n}$ is \mathcal{I}_{n}-elusive.

- Hider says "yes" for $e_{\alpha}=\{i, j\}$ iff $\operatorname{deg}_{G_{\alpha}}(i), \operatorname{deg}_{G_{\alpha}}(j)<n-1$
- G_{β} does not contain $K_{1, n}$.
- Fix $\alpha<\beta$ and assume that $d_{E_{\alpha} \cup U_{\alpha}}(v) \leq n-1$ for each $v \in \omega$.
- $A=\left\{v \in \omega: d_{E_{\alpha}}(v)=n-1\right\}$ and $B=\left\{v \in \omega: d_{E_{\alpha}}(v) \leq n-2\right\}$.

The property G contains $K_{1, n}$ is \mathcal{I}_{n}-elusive.

- Hider says "yes" for $\boldsymbol{e}_{\alpha}=\{i, j\}$ iff $\operatorname{deg}_{G_{\alpha}}(i), \operatorname{deg}_{G_{\alpha}}(j)<n-1$
- G_{β} does not contain $K_{1, n}$.
- Fix $\alpha<\beta$ and assume that $d_{E_{\alpha} \cup U_{\alpha}}(v) \leq n-1$ for each $v \in \omega$.
- $A=\left\{v \in \omega: d_{E_{\alpha}}(v)=n-1\right\}$ and $B=\left\{v \in \omega: d_{E_{\alpha}}(v) \leq n-2\right\}$.
- $N_{\alpha} \cap[B]^{2}=\emptyset$

The property G contains $K_{1, n}$ is \mathcal{I}_{n}-elusive.

- Hider says "yes" for $\boldsymbol{e}_{\alpha}=\{i, j\}$ iff $\operatorname{deg}_{G_{\alpha}}(i), \operatorname{deg}_{G_{\alpha}}(j)<n-1$
- G_{β} does not contain $K_{1, n}$.
- Fix $\alpha<\beta$ and assume that $d_{E_{\alpha} \cup U_{\alpha}}(v) \leq n-1$ for each $v \in \omega$.
- $A=\left\{v \in \omega: d_{E_{\alpha}}(v)=n-1\right\}$ and $B=\left\{v \in \omega: d_{E_{\alpha}}(v) \leq n-2\right\}$.
- $N_{\alpha} \cap[B]^{2}=\emptyset$
- $|B| \leq n$.

The property G contains $K_{1, n}$ is \mathcal{I}_{n}-elusive.

- Hider says "yes" for $\boldsymbol{e}_{\alpha}=\{i, j\}$ iff $\operatorname{deg}_{G_{\alpha}}(i), \operatorname{deg}_{G_{\alpha}}(j)<n-1$
- G_{β} does not contain $K_{1, n}$.
- Fix $\alpha<\beta$ and assume that $d_{E_{\alpha} \cup U_{\alpha}}(v) \leq n-1$ for each $v \in \omega$.
- $A=\left\{v \in \omega: d_{E_{\alpha}}(v)=n-1\right\}$ and $B=\left\{v \in \omega: d_{E_{\alpha}}(v) \leq n-2\right\}$.
- $N_{\alpha} \cap[B]^{2}=\emptyset$
- $|B| \leq n$.

Otherwise $d_{E_{\alpha} \cup U_{\alpha}}(b) \geq|B|-1 \geq n$ for $\left.b \in B\right)$.

The property G contains $K_{1, n}$ is \mathcal{I}_{n}-elusive.

- Hider says "yes" for $\boldsymbol{e}_{\alpha}=\{i, j\}$ iff $\operatorname{deg}_{G_{\alpha}}(i), \operatorname{deg}_{G_{\alpha}}(j)<n-1$
- G_{β} does not contain $K_{1, n}$.
- Fix $\alpha<\beta$ and assume that $d_{E_{\alpha} \cup U_{\alpha}}(v) \leq n-1$ for each $v \in \omega$.
- $A=\left\{v \in \omega: d_{E_{\alpha}}(v)=n-1\right\}$ and $B=\left\{v \in \omega: d_{E_{\alpha}}(v) \leq n-2\right\}$.
- $N_{\alpha} \cap[B]^{2}=\emptyset$
- $|B| \leq n$.

Otherwise $d_{E_{\alpha} \cup U_{\alpha}}(b) \geq|B|-1 \geq n$ for $\left.b \in B\right)$.

- $[A, \omega] \subset P_{\alpha}$
(Otherwise) $\{i, j\} \in U_{\alpha} \cap[A, \omega]$ with $i \in A$ implies $d_{E_{\alpha} \cup U_{\alpha}}(i) \geq n$.

The property G contains $K_{1, n}$ is \mathcal{I}_{n}-elusive.

- Hider says "yes" for $\boldsymbol{e}_{\alpha}=\{i, j\}$ iff $\operatorname{deg}_{G_{\alpha}}(i), \operatorname{deg}_{G_{\alpha}}(j)<n-1$
- G_{β} does not contain $K_{1, n}$.
- Fix $\alpha<\beta$ and assume that $d_{E_{\alpha} \cup U_{\alpha}}(v) \leq n-1$ for each $v \in \omega$.
- $A=\left\{v \in \omega: d_{E_{\alpha}}(v)=n-1\right\}$ and $B=\left\{v \in \omega: d_{E_{\alpha}}(v) \leq n-2\right\}$.
- $N_{\alpha} \cap[B]^{2}=\emptyset$
- $|B| \leq n$.

Otherwise $d_{E_{\alpha} \cup U_{\alpha}}(b) \geq|B|-1 \geq n$ for $\left.b \in B\right)$.

- $[A, \omega] \subset P_{\alpha}$
(Otherwise) $\{i, j\} \in U_{\alpha} \cap[A, \omega]$ with $i \in A$ implies $d_{E_{\alpha} \cup U_{\alpha}}(i) \geq n$.
- $P_{\alpha} \cup[B]^{2}=[\omega]^{2}$ and so $P_{\alpha} \notin \mathcal{I}_{n}$.

Problem
Decide if the the following property are elusive or not:

Problem
Decide if the the following property are elusive or not:

- G contains P_{3}

Problem
Decide if the the following property are elusive or not:

- G contains P_{3}
- G contains K_{ℓ}

Problem
Decide if the the following property are elusive or not:

- G contains P_{3}
- G contains K_{ℓ}
- G is connected

Problem
Decide if the the following property are elusive or not:

- G contains P_{3}
- G contains K_{ℓ}
- G is connected

Find the right AKR-style statement/conjecture for infinite graphs

