Elusive graph properties

Lajos Soukup

Alfréd Rényi Institute of Mathematics http://www.renyi.hu/~soukup

World Logic Day 2022

Joint work with with Tamás Csernák

Elusive properties of infinite graphs, arxiv note

• finite combinatorics, theoretical computer science

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,
- Does G have property P?

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,
- Does G have property P?
- We know the vertex set V of G.

- finite combinatorics, theoretical computer science
- G is a graph, P is property of graph,
- Does G have property P?
- We know the vertex set V of G.
- We do not know the edge set E of G.

- finite combinatorics, theoretical computer science
- *G* is a graph, *P* is property of graph,
- Does G have property P?
- We know the vertex set V of G.
- We do not know the edge set *E* of *G*.
- We can ask questions of the form "is there an edge between vertices x and y?"

- finite combinatorics, theoretical computer science
- *G* is a graph, *P* is property of graph,
- Does G have property P?
- We know the vertex set V of G.
- We do not know the edge set *E* of *G*.
- We can ask questions of the form "is there an edge between vertices x and y?"
- What is the minimum of the number of questions we need in the worst case?

- finite combinatorics, theoretical computer science
- *G* is a graph, *P* is property of graph,
- Does G have property P?
- We know the vertex set V of G.
- We do not know the edge set *E* of *G*.
- We can ask questions of the form "is there an edge between vertices x and y?"
- What is the minimum of the number of questions we need in the worst case?
- Need assumptions:

- finite combinatorics, theoretical computer science
- *G* is a graph, *P* is property of graph,
- Does G have property P?
- We know the vertex set V of G.
- We do not know the edge set *E* of *G*.
- We can ask questions of the form "is there an edge between vertices x and y?"
- What is the minimum of the number of questions we need in the worst case?
- Need assumptions:
- 1. P is a non-trivial property

- finite combinatorics, theoretical computer science
- *G* is a graph, *P* is property of graph,
- Does G have property P?
- We know the vertex set V of G.
- We do not know the edge set *E* of *G*.
- We can ask questions of the form "is there an edge between vertices x and y?"
- What is the minimum of the number of questions we need in the worst case?
- Need assumptions:
- 1. P is a non-trivial property
- 2. *P* is a graph property (i.e. preserved by isomorphism)

A bold conjecture

- *P* is a non-trivial graph property. *V* is a (finite) vertex set.
- Test this property by asking questions of the form " is there an edge between vertices x and y?"
- What is the minimal number of such questions in the worst case?

A bold conjecture

- P is a non-trivial graph property. V is a (finite) vertex set.
- Test this property by asking questions of the form " is there an edge between vertices x and y?"
- What is the minimal number of such questions in the worst case?

Definition

Let $\mu(P, n)$ be the minimal number of such questions in the worst case when |V| = n

A bold conjecture

- P is a non-trivial graph property. V is a (finite) vertex set.
- Test this property by asking questions of the form " is there an edge between vertices x and y?"
- What is the minimal number of such questions in the worst case?

Definition

Let $\mu(P, n)$ be the minimal number of such questions in the worst case when |V| = n

A bold conjecture (Aanderaa-Rosenberg)

 $\mu(P, n) = \binom{n}{2}$ for any non-trivial graph property P and $n \in \omega$.

Theorem (Best, Boas, Lenstra)

There is a non-trivial graph property such that $\mu(P, n) < \binom{n}{2}$.

Theorem (Best, Boas, Lenstra)

There is a non-trivial graph property such that $\mu(P, n) < \binom{n}{2}$.

Property *P*_n:

V has a partition $V = \{u\} \cup \{v_i : i < n - 4\} \cup \{x_0, x_1, x_2\}$ such that

Theorem (Best, Boas, Lenstra)

There is a non-trivial graph property such that $\mu(P, n) < \binom{n}{2}$.

Property *P*_n:

V has a partition $V = \{u\} \cup \{v_i : i < n - 4\} \cup \{x_0, x_1, x_2\}$ such that

•
$$deg_G(u) = n - 4$$

Theorem (Best, Boas, Lenstra)

There is a non-trivial graph property such that $\mu(P, n) < \binom{n}{2}$.

Property *P*_n:

V has a partition $V = \{u\} \cup \{v_i : i < n - 4\} \cup \{x_0, x_1, x_2\}$ such that

- $deg_G(u) = n 4$
- $deg_G(v_i) = 1$ and $uv_i \in E$ for i < n 4

Theorem (Best, Boas, Lenstra)

There is a non-trivial graph property such that $\mu(P, n) < \binom{n}{2}$.

Property *P*_n:

V has a partition $V = \{u\} \cup \{v_i : i < n - 4\} \cup \{x_0, x_1, x_2\}$ such that

- $deg_G(u) = n 4$
- $deg_G(v_i) = 1$ and $uv_i \in E$ for i < n 4

Theorem (Best, Boas, Lenstra)

There is a non-trivial graph property such that $\mu(P, n) < \binom{n}{2}$.

Property *P*_n:

V has a partition $V = \{u\} \cup \{v_i : i < n - 4\} \cup \{x_0, x_1, x_2\}$ such that

- $deg_G(u) = n 4$
- $deg_G(v_i) = 1$ and $uv_i \in E$ for i < n 4

An algoritm for the Seeker:

• divide V into two large pieces: $n = A_0 \cup A_1$. ($|A_i| \ge 6$)

Theorem (Best, Boas, Lenstra)

There is a non-trivial graph property such that $\mu(P, n) < \binom{n}{2}$.

Property *P*_n:

V has a partition $V = \{u\} \cup \{v_i : i < n - 4\} \cup \{x_0, x_1, x_2\}$ such that

- $deg_G(u) = n 4$
- $deg_G(v_i) = 1$ and $uv_i \in E$ for i < n 4

- divide V into two large pieces: $n = A_0 \cup A_1$. ($|A_i| \ge 6$)
- Ask all the edges between A₀ and A₁. We know u.

Theorem (Best, Boas, Lenstra)

There is a non-trivial graph property such that $\mu(P, n) < \binom{n}{2}$.

Property *P*_n:

V has a partition $V = \{u\} \cup \{v_i : i < n - 4\} \cup \{x_0, x_1, x_2\}$ such that

- $deg_G(u) = n 4$
- $deg_G(v_i) = 1$ and $uv_i \in E$ for i < n 4

- divide V into two large pieces: $n = A_0 \cup A_1$. ($|A_i| \ge 6$)
- Ask all the edges between A_0 and A_1 . We know u.
- Ask all the pairs which contains *u*. We know the partition.

Theorem (Best, Boas, Lenstra)

There is a non-trivial graph property such that $\mu(P, n) < \binom{n}{2}$.

Property *P*_n:

V has a partition $V = \{u\} \cup \{v_i : i < n - 4\} \cup \{x_0, x_1, x_2\}$ such that

- $deg_G(u) = n 4$
- $deg_G(v_i) = 1$ and $uv_i \in E$ for i < n 4

- divide V into two large pieces: $n = A_0 \cup A_1$. ($|A_i| \ge 6$)
- Ask all the edges between A_0 and A_1 . We know u.
- Ask all the pairs which contains *u*. We know the partition.
- Ask all the pairs v_iv_j and v_ix_k. We know if G has property P_n.

Theorem (Best, Boas, Lenstra)

There is a non-trivial graph property such that $\mu(P, n) < \binom{n}{2}$.

Property *P*_n:

V has a partition $V = \{u\} \cup \{v_i : i < n - 4\} \cup \{x_0, x_1, x_2\}$ such that

- $deg_G(u) = n 4$
- $deg_G(v_i) = 1$ and $uv_i \in E$ for i < n 4

- divide V into two large pieces: $n = A_0 \cup A_1$. ($|A_i| \ge 6$)
- Ask all the edges between A_0 and A_1 . We know u.
- Ask all the pairs which contains *u*. We know the partition.
- Ask all the pairs v_iv_j and v_ix_k. We know if G has property P_n.
- There is k < 2 and i ≠ j < 3 such that x_i, x_j ∈ A_k. We did not asked x_ix_j.

Conjecture

If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

Conjecture

If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

Definition

Conjecture

If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

Definition

A graph $G = \langle V, E \rangle$ is a **scorpion** iff G has 3 special vertices, called the sting, the tail, and the body:

the sting is connected only to the tail,

Conjecture

If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

Definition

- the sting is connected only to the tail,
- the tail is connected only to the sting and the body,

Conjecture

If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

Definition

- the sting is connected only to the tail,
- the tail is connected only to the sting and the body,
- and the body is connected to all vertices except the sting.

Conjecture

If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

Definition

- the sting is connected only to the tail,
- the tail is connected only to the sting and the body,
- and the body is connected to all vertices except the sting.

Conjecture

If P is a non-trivial graph property and $n \in \omega$, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

Definition

A graph $G = \langle V, E \rangle$ is a **scorpion** iff G has 3 special vertices, called the sting, the tail, and the body:

- the sting is connected only to the tail,
- the tail is connected only to the sting and the body,
- and the body is connected to all vertices except the sting.

Theorem (Best, Boas, Lenstra)

There is an algorithm using only O(n) questions to determine if G is a scorpion.

Definition A property P is **monotone** if it remains true when edges are added.

Definition

A property P is **monotone** if it remains true when edges are added.

Conjecture (Aanderaa-Rosenberg)

If P is a monotone, non-trivial graph property, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

Definition

A property P is **monotone** if it remains true when edges are added.

Conjecture (Aanderaa-Rosenberg)

If P is a monotone, non-trivial graph property, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

Theorem (Rivest and Vuillemin)

The Anderaa-Rosenberg conjecture holds.

Definition

A property P is **monotone** if it remains true when edges are added.

Conjecture (Aanderaa-Rosenberg)

If P is a monotone, non-trivial graph property, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

Theorem (Rivest and Vuillemin)

The Anderaa-Rosenberg conjecture holds.

Conjecture (Aanderaa-Karp-Rosenberg)

If P is a monotone, non-trivial graph property, then $\mu(P, n) = \binom{n}{2}$.

Definition

A property P is **monotone** if it remains true when edges are added.

Conjecture (Aanderaa-Rosenberg)

If P is a monotone, non-trivial graph property, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

Theorem (Rivest and Vuillemin) The Anderaa-Rosenberg conjecture holds.

Conjecture (Aanderaa-Karp-Rosenberg)

If P is a monotone, non-trivial graph property, then $\mu(P, n) = \binom{n}{2}$.

Definition A property P is elusive if $\mu(P, n) = \binom{n}{2}$.

Conjecture (Aanderaa–Karp–Rosenberg) If P is a monotone, non-trivial graph property, then P is elusive.

Conjecture (Aanderaa–Karp–Rosenberg) If P is a monotone, non-trivial graph property, then P is elusive.

Theorem (Bollobás) The property "G contains K_m" is elusive.

Conjecture (Aanderaa–Karp–Rosenberg)

If P is a monotone, non-trivial graph property, then P is elusive.

Theorem (Bollobás)

The property "G contains K_m" is elusive.

Theorem (Kahn, Sacks and Sturtevant)

If *P* is a monotone, non-trivial graph property, then $\mu(P, n) = \binom{n}{2}$ provided that *n* is a prime power.

Conjecture (Aanderaa–Karp–Rosenberg)

If P is a monotone, non-trivial graph property, then P is elusive.

Theorem (Bollobás)

The property "G contains K_m" is elusive.

Theorem (Kahn, Sacks and Sturtevant)

If *P* is a monotone, non-trivial graph property, then $\mu(P, n) = \binom{n}{2}$ provided that *n* is a prime power.

Theorem (Yao)

If P is a monotone, non-trivial graph property, then P is elusive on the bipartite graphs.

What about infinite graphs?

• A triple $G = \langle V, E, N \rangle$ is an pregraphs iff $E \cup N \subset [V]^2$ and $E \cap N = \emptyset$.

- A triple $G = \langle V, E, N \rangle$ is an pregraphs iff $E \cup N \subset [V]^2$ and $E \cap N = \emptyset$.
- V is the set of vertices,

- A triple $G = \langle V, E, N \rangle$ is an pregraphs iff $E \cup N \subset [V]^2$ and $E \cap N = \emptyset$.
- V is the set of vertices,
- E is the set of edges, and

- A triple $G = \langle V, E, N \rangle$ is an **pregraphs** iff $E \cup N \subset [V]^2$ and $E \cap N = \emptyset$.
- V is the set of vertices,
- E is the set of edges, and
- *N* is the set of **nonedges**,

- A triple $G = \langle V, E, N \rangle$ is an **pregraphs** iff $E \cup N \subset [V]^2$ and $E \cap N = \emptyset$.
- V is the set of vertices,
- E is the set of edges, and
- *N* is the set of **nonedges**,
- $P = E \cup N$ is the set of **determined pairs** of *G*, and

- A triple $G = \langle V, E, N \rangle$ is an **pregraphs** iff $E \cup N \subset [V]^2$ and $E \cap N = \emptyset$.
- V is the set of vertices,
- E is the set of edges, and
- N is the set of **nonedges**,
- $P = E \cup N$ is the set of **determined pairs** of *G*, and
- $U = [V]^2 \setminus P$ is the set of **undetermined pairs** of *G*.

- A triple $G = \langle V, E, N \rangle$ is an **pregraphs** iff $E \cup N \subset [V]^2$ and $E \cap N = \emptyset$.
- V is the set of vertices,
- E is the set of edges, and
- N is the set of **nonedges**,
- $P = E \cup N$ is the set of **determined pairs** of *G*, and
- $U = [V]^2 \setminus P$ is the set of **undetermined pairs** of *G*.
- min $G = \langle V, E \rangle$ and max $G = \langle V, E \cup U \rangle$.

Definition Let R be a monotone graph property and V be a vertex set.

Definition

Let R be a monotone graph property and V be a vertex set. Define the **game** $\mathbb{E}_{V,R}$ between two players, the **Seeker** and the **Hider**, as follows:

(1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.

Definition

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = [V]^2$, i.e $U_{G_{\beta}} = \emptyset$.

Definition

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = [V]^2$, i.e $U_{G_{\beta}} = \emptyset$.
- (3) Let $G_0 = \langle V, \emptyset, \emptyset \rangle$.

Definition

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = [V]^2$, i.e $U_{G_{\beta}} = \emptyset$.
- (3) Let $G_0 = \langle V, \emptyset, \emptyset \rangle$.
- (4) $E_{G_{\alpha}} = \bigcup_{\zeta < \alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}} = \bigcup_{\zeta < \alpha} N_{G_{\alpha}}$ for limit α .

Definition

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = [V]^2$, i.e $U_{G_{\beta}} = \emptyset$.
- (3) Let $G_0 = \langle V, \emptyset, \emptyset \rangle$.
- (4) $E_{G_{\alpha}} = \bigcup_{\zeta < \alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}} = \bigcup_{\zeta < \alpha} N_{G_{\alpha}}$ for limit α .
- (5) If $\alpha = \gamma + 1$, the Seeker picks an undetermined pair $e_{\gamma} \in U_{G_{\gamma}}$, the Hider decides if e_{γ} is an **edge**, or a **nonedge** in G_{α} ,

Definition

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = [V]^2$, i.e $U_{G_{\beta}} = \emptyset$.
- (3) Let $G_0 = \langle V, \emptyset, \emptyset \rangle$.
- (4) $E_{G_{\alpha}} = \bigcup_{\zeta < \alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}} = \bigcup_{\zeta < \alpha} N_{G_{\alpha}}$ for limit α .
- (5) If $\alpha = \gamma + 1$, the Seeker picks an undetermined pair $e_{\gamma} \in U_{G_{\gamma}}$, the Hider decides if e_{γ} is an edge, or a nonedge in G_{α} ,
- (6) the Hider wins iff the graph (V, E_{G_α}) does not have property R, but graph (V, E_{G_α} ∪ U_{G_α}) has property R for each α < β.</p>

Definition

Let R be a monotone graph property and V be a vertex set. Define the **game** $\mathbb{E}_{V,R}$ between two players, the **Seeker** and the **Hider**, as follows:

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = [V]^2$, i.e $U_{G_{\beta}} = \emptyset$.
- (3) Let $G_0 = \langle V, \emptyset, \emptyset \rangle$.
- (4) $E_{G_{\alpha}} = \bigcup_{\zeta < \alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}} = \bigcup_{\zeta < \alpha} N_{G_{\alpha}}$ for limit α .
- (5) If $\alpha = \gamma + 1$, the Seeker picks an undetermined pair $e_{\gamma} \in U_{G_{\gamma}}$, the Hider decides if e_{γ} is an edge, or a nonedge in G_{α} ,
- (6) the Hider wins iff the graph (V, E_{G_α}) does not have property R, but graph (V, E_{G_α} ∪ U_{G_α}) has property R for each α < β.</p>

A graph property R is **elusive** on a set V iff the Hider has a winning strategy in the game $\mathbb{E}_{V,R}$.

A positive theorem

A positive theorem

Theorem The monotone graph property R

"the graph contains a cycle "

is elusive for any vertex set V.

Proof:

Proof:

• The Hider can win using a following greedy algorithm.

Proof:

- The Hider can win using a following greedy algorithm.
- We have a pregraph G_α = ⟨V, E_α, N_α⟩ in the αth step and the Seeker selected the pair e_α.

Proof:

- The Hider can win using a following greedy algorithm.
- We have a pregraph G_α = ⟨V, E_α, N_α⟩ in the αth step and the Seeker selected the pair e_α.
- If ⟨V, E_α ∪ {e_α}⟩ is cycle-free, then Hider declares that e_α is an edge, i.e. E_{α+1} = E_α ∪ {e_α}.

- The Hider can win using a following greedy algorithm.
- We have a pregraph G_α = ⟨V, E_α, N_α⟩ in the αth step and the Seeker selected the pair e_α.
- If ⟨V, E_α ∪ {e_α}⟩ is cycle-free, then Hider declares that e_α is an edge, i.e. E_{α+1} = E_α ∪ {e_α}.
- Otherwise e_{α} will be a nonedge.

- The Hider can win using a following greedy algorithm.
- We have a pregraph G_α = ⟨V, E_α, N_α⟩ in the αth step and the Seeker selected the pair e_α.
- If ⟨V, E_α ∪ {e_α}⟩ is cycle-free, then Hider declares that e_α is an edge, i.e. E_{α+1} = E_α ∪ {e_α}.
- Otherwise e_{α} will be a nonedge.
- Assume that the game terminates after β turns.

- The Hider can win using a following greedy algorithm.
- We have a pregraph G_α = ⟨V, E_α, N_α⟩ in the αth step and the Seeker selected the pair e_α.
- If ⟨V, E_α ∪ {e_α}⟩ is cycle-free, then Hider declares that e_α is an edge, i.e. E_{α+1} = E_α ∪ {e_α}.
- Otherwise e_{α} will be a nonedge.
- Assume that the game terminates after β turns.
- Claim 1. For each $\alpha \leq \beta$ the graph G_{α} is cycle-free.

- The Hider can win using a following greedy algorithm.
- We have a pregraph G_α = ⟨V, E_α, N_α⟩ in the αth step and the Seeker selected the pair e_α.
- If ⟨V, E_α ∪ {e_α}⟩ is cycle-free, then Hider declares that e_α is an edge, i.e. E_{α+1} = E_α ∪ {e_α}.
- Otherwise e_{α} will be a nonedge.
- Assume that the game terminates after β turns.
- Claim 1. For each $\alpha \leq \beta$ the graph G_{α} is cycle-free.
- Claim 2. If G_α is connected and U_{G_α} ≠ Ø, then max G_α contains a cycle.

- The Hider can win using a following greedy algorithm.
- We have a pregraph G_α = ⟨V, E_α, N_α⟩ in the αth step and the Seeker selected the pair e_α.
- If ⟨V, E_α ∪ {e_α}⟩ is cycle-free, then Hider declares that e_α is an edge, i.e. E_{α+1} = E_α ∪ {e_α}.
- Otherwise e_{α} will be a nonedge.
- Assume that the game terminates after β turns.
- Claim 1. For each $\alpha \leq \beta$ the graph G_{α} is cycle-free.
- Claim 2. If G_α is connected and U_{G_α} ≠ Ø, then max G_α contains a cycle.
- Claim 3. If G_{α} is not connected then max G_{α} contains a triangle.

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.

If R is a monotone graph property such that

for each graph $G = \langle V, E \rangle$ and $e \in E$,

the graph G has property R iff $\langle V, E \setminus \{e\} \rangle$ has property R (*)

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.

If R is a monotone graph property such that

for each graph $G = \langle V, E \rangle$ and $e \in E$, the graph G has property R iff $\langle V, E \setminus \{e\} \rangle$ has property R (*)

then the Seeker has a trivial winning strategy:

• they enumerates $[V]^2$ as $\langle e_{\alpha} : \alpha \leq \beta \rangle$, and

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.

If R is a monotone graph property such that

for each graph $G = \langle V, E \rangle$ and $e \in E$, the graph G has property R iff $\langle V, E \setminus \{e\} \rangle$ has property R (*)

- they enumerates $[V]^2$ as $\langle \boldsymbol{e}_{\alpha} : \alpha \leq \beta \rangle$, and
- they picks e_{α} in the α th step.

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.

If R is a monotone graph property such that

for each graph $G = \langle V, E \rangle$ and $e \in E$, the graph G has property R iff $\langle V, E \setminus \{e\} \rangle$ has property R (*)

- they enumerates $[V]^2$ as $\langle \boldsymbol{e}_{\alpha} : \alpha \leq \beta \rangle$, and
- they picks e_{α} in the α th step.
- $\langle V, E_{\beta} \rangle$ has property R iff $\langle V, E_{\beta} \cup \{e_{\beta}\} \rangle$ has property R.

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.

If R is a monotone graph property such that

for each graph $G = \langle V, E \rangle$ and $e \in E$, the graph G has property R iff $\langle V, E \setminus \{e\} \rangle$ has property R (*)

- they enumerates $[V]^2$ as $\langle \boldsymbol{e}_{\alpha} : \alpha \leq \beta \rangle$, and
- they picks e_{α} in the α th step.
- $\langle V, E_{\beta} \rangle$ has property R iff $\langle V, E_{\beta} \cup \{e_{\beta}\} \rangle$ has property R.
- So the Seeker wins.

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.

If R is a monotone graph property such that

for each graph $G = \langle V, E \rangle$ and $e \in E$, the graph G has property R iff $\langle V, E \setminus \{e\} \rangle$ has property R (*)

then the Seeker has a trivial winning strategy:

- they enumerates $[V]^2$ as $\langle \boldsymbol{e}_{\alpha} : \alpha \leq \beta \rangle$, and
- they picks e_{α} in the α th step.
- $\langle V, E_{\beta} \rangle$ has property R iff $\langle V, E_{\beta} \cup \{e_{\beta}\} \rangle$ has property R.
- So the Seeker wins.

The property " every vertex has infinite degree" is clearly monotone and has property (*).

Naive conjecture: Every monotone graph property is elusive on every infinite vertex set.

If R is a monotone graph property such that

for each graph $G = \langle V, E \rangle$ and $e \in E$, the graph G has property R iff $\langle V, E \setminus \{e\} \rangle$ has property R (*)

then the Seeker has a trivial winning strategy:

- they enumerates $[V]^2$ as $\langle \boldsymbol{e}_{\alpha} : \alpha \leq \beta \rangle$, and
- they picks e_{α} in the α th step.
- $\langle V, E_{\beta} \rangle$ has property R iff $\langle V, E_{\beta} \cup \{e_{\beta}\} \rangle$ has property R.
- So the Seeker wins.

The property " every vertex has infinite degree" is clearly monotone and has property (*).

Revised Naive conjecture: Every "natural" monotone graph property is elusive on every infinite vertex set.

Theorem

For each natural number n and for each infinite set V the monotone graph property R_n

"deg_G(v) $\ge n$ for each vertex v"

is not elusive on V.

Theorem

For each natural number n and for each infinite set V the monotone graph property R_n

"deg_G(v) $\geq n$ for each vertex v"

is not elusive on V.

Theorem

For each natural number n and for each infinite set V the monotone graph property C_n

'the connected components have size at least n"

is not elusive on V.

Theorem

For each natural number n and for each infinite set V the monotone graph property R_n

"deg $_G(v) \ge n$ for each vertex v"

is not elusive on V.

Theorem

For each natural number n and for each infinite set V the monotone graph property C_n

'the connected components have size at least n"

is not elusive on V.

Actually, the Seeker has winning strategies in both cases.

Definition

Let *R* be a monotone graph property and let $H = \langle V, F \rangle$ be a graph.

Definition

Let *R* be a monotone graph property and let $H = \langle V, F \rangle$ be a graph. Define the game $\mathbb{E}_{H,R}$ between two players, Seeker and Hider, as follows:

Definition

Let *R* be a monotone graph property and let $H = \langle V, F \rangle$ be a graph. Define the game $\mathbb{E}_{H,R}$ between two players, Seeker and Hider, as follows:

(1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.

Definition

Let *R* be a monotone graph property and let $H = \langle V, F \rangle$ be a graph. Define the game $\mathbb{E}_{H,R}$ between two players, Seeker and Hider, as follows:

(1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.

(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = F$.

Definition

Let *R* be a monotone graph property and let $H = \langle V, F \rangle$ be a graph. Define the game $\mathbb{E}_{H,R}$ between two players, Seeker and Hider, as follows:

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = F$.
- (3) Let $G_0 = \langle V, \emptyset, \emptyset \rangle$.

Definition

Let *R* be a monotone graph property and let $H = \langle V, F \rangle$ be a graph. Define the game $\mathbb{E}_{H,R}$ between two players, Seeker and Hider, as follows:

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = F$.
- (3) Let $G_0 = \langle V, \emptyset, \emptyset \rangle$.
- (4) $E_{G_{\alpha}} = \bigcup_{\zeta < \alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}} = \bigcup_{\zeta < \alpha} N_{G_{\alpha}}$ for limit α .

Definition

Let *R* be a monotone graph property and let $H = \langle V, F \rangle$ be a graph. Define the game $\mathbb{E}_{H,R}$ between two players, Seeker and Hider, as follows:

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = F$.

(3) Let
$$G_0 = \langle V, \emptyset, \emptyset \rangle$$
.

(4)
$$E_{G_{\alpha}} = \bigcup_{\zeta < \alpha} E_{G_{\zeta}}$$
 and $N_{G_{\alpha}} = \bigcup_{\zeta < \alpha} N_{G_{\alpha}}$ for limit α .

(5) If α = γ + 1, Seeker picks an undetermined pair
 e_γ ∈ F \ (E_{G_γ} ∪ N_{G_γ}), Hider decides if e_γ is an edge, or a nonedge in G_α,

Definition

Let *R* be a monotone graph property and let $H = \langle V, F \rangle$ be a graph. Define the game $\mathbb{E}_{H,R}$ between two players, Seeker and Hider, as follows:

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = F$.

(3) Let
$$G_0 = \langle V, \emptyset, \emptyset \rangle$$
.

(4)
$$E_{G_{\alpha}} = \bigcup_{\zeta < \alpha} E_{G_{\zeta}}$$
 and $N_{G_{\alpha}} = \bigcup_{\zeta < \alpha} N_{G_{\alpha}}$ for limit α .

- (5) If $\alpha = \gamma + 1$, Seeker picks an undetermined pair $e_{\gamma} \in F \setminus (E_{G_{\gamma}} \cup N_{G_{\gamma}})$, Hider decides if e_{γ} is an edge, or a nonedge in G_{α} ,
- (6) Hider wins iff the graph $\langle V, E_{G_{\alpha}} \rangle$ does not have property *R*, but graph $\langle V, F \setminus N_{G_{\alpha}} \rangle$ has property *R* for each $\alpha < \beta$.

Definition

Let *R* be a monotone graph property and let $H = \langle V, F \rangle$ be a graph. Define the game $\mathbb{E}_{H,R}$ between two players, Seeker and Hider, as follows:

(1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.

(2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = F$.

(3) Let
$$G_0 = \langle V, \emptyset, \emptyset \rangle$$
.

(4)
$$E_{G_{\alpha}} = \bigcup_{\zeta < \alpha} E_{G_{\zeta}}$$
 and $N_{G_{\alpha}} = \bigcup_{\zeta < \alpha} N_{G_{\alpha}}$ for limit α .

- (5) If $\alpha = \gamma + 1$, Seeker picks an undetermined pair $e_{\gamma} \in F \setminus (E_{G_{\gamma}} \cup N_{G_{\gamma}})$, Hider decides if e_{γ} is an edge, or a nonedge in G_{α} ,
- (6) Hider wins iff the graph $\langle V, E_{G_{\alpha}} \rangle$ does not have property *R*, but graph $\langle V, F \setminus N_{G_{\alpha}} \rangle$ has property *R* for each $\alpha < \beta$.
- *R* is *H*-elusive iff Hider has a winning strategy in $\mathbb{E}_{V,R}$.

Definition Let $H = \langle V, E^* \rangle$ be a graph. A vertex set $L \subset V$ is a **covering** set iff for each $v \in V \setminus L$ there is $a \in L$ with $\{v, a\} \in E^*$. Definition

Let $H = \langle V, E^* \rangle$ be a graph. A vertex set $L \subset V$ is a **covering** set iff for each $v \in V \setminus L$ there is $a \in L$ with $\{v, a\} \in E^*$. We say that G is **braided** iff for each $W \in [V]^{<|V|}$ there is a finite covering set $L \in [V \setminus W]^{<\omega}$.

Definition

Let $H = \langle V, E^* \rangle$ be a graph. A vertex set $L \subset V$ is a **covering** set iff for each $v \in V \setminus L$ there is $a \in L$ with $\{v, a\} \in E^*$. We say that G is **braided** iff for each $W \in [V]^{<|V|}$ there is a finite covering set $L \in [V \setminus W]^{<\omega}$.

Definition

Define the Cantor graph C as follows: its vertex set is the set of all finite 0-1 sequences, and $\{s, t\}$ is an edge iff $s \subset t$ or $t \subset s$.

Definition

Let $H = \langle V, E^* \rangle$ be a graph. A vertex set $L \subset V$ is a **covering** set iff for each $v \in V \setminus L$ there is $a \in L$ with $\{v, a\} \in E^*$. We say that G is **braided** iff for each $W \in [V]^{<|V|}$ there is a finite covering set $L \in [V \setminus W]^{<\omega}$.

Definition

Define the Cantor graph C as follows: its vertex set is the set of all finite 0-1 sequences, and $\{s, t\}$ is an edge iff $s \subset t$ or $t \subset s$.

Proposition

Given an infinite cardinal κ , the infinite complete graph K_{κ} , the balanced bipartite graph $K_{\kappa,\kappa}$, the Turan graphs $T(\kappa, n)$ for $n \in \omega$, and the Cantor graph C are braided.

Theorem

For each natural number n and for each infinite braided graph $H = \langle V, E^* \rangle$ the monotone graph property R_n

" deg_G(v) $\geq n$ for each vertex v"

is not H-elusive.

Theorem

For each natural number n and for each infinite braided graph $H = \langle V, E^* \rangle$ the monotone graph property C_n

" the connected components have size at least n"

is not H-elusive.

A positive result

A positive result

Theorem The monotone graph property R

"the graph contains a cycle "

is elusive for any vertex set V.

Theorem The monotone graph property R

"the graph contains a cycle "

is elusive for any vertex set V.

The property R is K_V -elusive for any vertex set V, where K_V is the complete graph on V.

Theorem The monotone graph property R

"the graph contains a cycle "

is elusive for any vertex set V.

The property R is K_V -elusive for any vertex set V, where K_V is the complete graph on V.

Theorem Let H be a graph. The following two statements are equivalent:

Theorem The monotone graph property R

"the graph contains a cycle "

is elusive for any vertex set V.

The property R is K_V -elusive for any vertex set V, where K_V is the complete graph on V.

Theorem

Let H be a graph. The following two statements are equivalent:

• Every connected component of H is 2-edge connected,

Theorem The monotone graph property R

"the graph contains a cycle "

is elusive for any vertex set V.

The property R is K_V -elusive for any vertex set V, where K_V is the complete graph on V.

Theorem

Let H be a graph. The following two statements are equivalent:

- Every connected component of H is 2-edge connected,
- the monotone graph property R

" the graph contains a cycle "

is H-elusive.

Theorem

If P is a monotone, non-trivial graph property, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

Theorem If *P* is a monotone, non-trivial graph property, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

What about infinite graph?

Theorem If *P* is a monotone, non-trivial graph property, then $\mu(P, n) = \Omega(n^2)$ (i.e. $\mu(P, n) \ge c \cdot n^2$ for some c > 0).

What about infinite graph?

"The seeker should ask lots of edges"

Definition

Let *R* be a monotone graph property and *V* be a vertex set and $\mathcal{I} \subset \mathcal{P}([V]^2)$ be downwards closed.

Definition

Let *R* be a monotone graph property and *V* be a vertex set and $\mathcal{I} \subset \mathcal{P}([V]^2)$ be downwards closed.

Define the **game** $\mathbb{E}_{V,\mathcal{I},R}$ between two players, **Seeker** and **Hider**, as follows:

Definition

Let *R* be a monotone graph property and *V* be a vertex set and $\mathcal{I} \subset \mathcal{P}([V]^2)$ be downwards closed.

Define the **game** $\mathbb{E}_{V,\mathcal{I},R}$ between two players, **Seeker** and **Hider**, as follows:

(1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.

Definition

Let *R* be a monotone graph property and *V* be a vertex set and $\mathcal{I} \subset \mathcal{P}([V]^2)$ be downwards closed. Define the game $\mathbb{E}_{V,\mathcal{I},R}$ between two players, Seeker and Hider, as

follows:

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = [V]^2$, i.e $U_{G_{\beta}} = \emptyset$.

Definition

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = [V]^2$, i.e $U_{G_{\beta}} = \emptyset$.
- (3) Let $G_0 = \langle V, \emptyset, \emptyset \rangle$.

Definition

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = [V]^2$, i.e $U_{G_{\beta}} = \emptyset$.
- (3) Let $G_0 = \langle V, \emptyset, \emptyset \rangle$.

(4)
$$E_{G_{\alpha}} = \bigcup_{\zeta < \alpha} E_{G_{\zeta}}$$
 and $N_{G_{\alpha}} = \bigcup_{\zeta < \alpha} N_{G_{\alpha}}$ for limit α .

Definition

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = [V]^2$, i.e $U_{G_{\beta}} = \emptyset$.
- (3) Let $G_0 = \langle V, \emptyset, \emptyset \rangle$.
- (4) $E_{G_{\alpha}} = \bigcup_{\zeta < \alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}} = \bigcup_{\zeta < \alpha} N_{G_{\alpha}}$ for limit α .
- (5) If α = γ + 1, Seeker picks an undetermined pair e_γ ∈ U_{G_γ}, Hider decides if e_γ is an edge, or a nonedge in G_α,

Definition

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = [V]^2$, i.e $U_{G_{\beta}} = \emptyset$.
- (3) Let $G_0 = \langle V, \emptyset, \emptyset \rangle$.
- (4) $E_{G_{\alpha}} = \bigcup_{\zeta < \alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}} = \bigcup_{\zeta < \alpha} N_{G_{\alpha}}$ for limit α .
- (5) If α = γ + 1, Seeker picks an undetermined pair e_γ ∈ U_{G_γ}, Hider decides if e_γ is an edge, or a nonedge in G_α,
- (6) Hider wins iff for each α < β if P_{Gα} ∈ I, then graph ⟨V, E_{Gα}⟩ does not have property R, but graph ⟨V, E_{Gα} ∪ U_{Gα}⟩ has property R for each α < β.</p>

Definition

Let R be a monotone graph property and V be a vertex set and $\mathcal{I} \subset \mathcal{P}([V]^2)$ be downwards closed. Define the game $\mathbb{E}_{V,\mathcal{I},R}$ between two players, Seeker and Hider, as

follows:

- (1) They construct a sequence $\langle G_{\alpha} : \alpha \leq \beta \rangle$ of pregraphs on V.
- (2) The game terminates when $E_{G_{\beta}} \cup N_{G_{\beta}} = [V]^2$, i.e $U_{G_{\beta}} = \emptyset$.
- (3) Let $G_0 = \langle V, \emptyset, \emptyset \rangle$.
- (4) $E_{G_{\alpha}} = \bigcup_{\zeta < \alpha} E_{G_{\zeta}}$ and $N_{G_{\alpha}} = \bigcup_{\zeta < \alpha} N_{G_{\alpha}}$ for limit α .
- (5) If α = γ + 1, Seeker picks an undetermined pair e_γ ∈ U_{G_γ}, Hider decides if e_γ is an edge, or a nonedge in G_α,
- (6) Hider wins iff for each α < β if P_{Gα} ∈ I, then graph ⟨V, E_{Gα}⟩ does not have property R, but graph ⟨V, E_{Gα} ∪ U_{Gα}⟩ has property R for each α < β.</p>

A graph property R is \mathcal{I} -elusive on a set V iff Hider has a winning strategy in the game $\mathbb{E}_{V,\mathcal{I},R}$.

The ideal $\mathcal{I}_{\textit{SF}}$ of square-free sets.

The ideal \mathcal{I}_{SF} of square-free sets.

 $\mathcal{I}_{SF} = \{ F \subset [\omega]^2 : \neg \exists W \in [\omega]^{\omega} [W]^2 \subset F \}.$

The ideal \mathcal{I}_{SF} of square-free sets.

 $\mathcal{I}_{SF} = \{ F \subset [\omega]^2 : \neg \exists W \in [\omega]^{\omega} [W]^2 \subset F \}.$

Theorem

The property G is a scorpion graph is not \mathcal{I}_{SF} -elusive.

The ideal $\mathcal{I}_{\textit{SF}}$ of square-free sets.

$$\mathcal{I}_{SF} = \{ F \subset [\omega]^2 : \neg \exists W \in [\omega]^{\omega} [W]^2 \subset F \}.$$

Theorem

The property G is a scorpion graph is not \mathcal{I}_{SF} -elusive.

The ideal \mathcal{I}_{SF} of square-free sets.

$$\mathcal{I}_{SF} = \{ F \subset [\omega]^2 : \neg \exists W \in [\omega]^{\omega} [W]^2 \subset F \}.$$

Theorem

The property G is a scorpion graph is not \mathcal{I}_{SF} -elusive.

Theorem

(1) For each natural number n the monotone graph property R_n

" deg_G(v) $\geq n$ for each vertex v"

is \mathcal{I}_{SF} -elusive on the vertex set ω .

The ideal \mathcal{I}_{SF} of square-free sets.

$$\mathcal{I}_{SF} = \{ F \subset [\omega]^2 : \neg \exists W \in [\omega]^{\omega} [W]^2 \subset F \}.$$

Theorem

The property G is a scorpion graph is not \mathcal{I}_{SF} -elusive.

Theorem

(1) For each natural number n the monotone graph property R_n

" deg_G(v) $\geq n$ for each vertex v"

is \mathcal{I}_{SF} -elusive on the vertex set ω . (2) For each natural number n the monotone graph property C_n

" $c_G(v) \ge n$ for each vertex v"

is \mathcal{I}_{SF} -elusive on the vertex set ω .

• If
$$F \subset [\omega]^2$$
 and $j \in \omega$, let

$$\deg_{F}(j) = |\{i \in \omega : \{i, j\} \in F\}|$$
$$\deg_{F}^{<}(j) = |\{i < j : \{i, j\} \in F\}|$$

• If
$$F \subset [\omega]^2$$
 and $j \in \omega$, let

$$\deg_{F}(j) = |\{i \in \omega : \{i, j\} \in F\}|$$
$$\deg_{F}^{<}(j) = |\{i < j : \{i, j\} \in F\}|$$

 The strategy of the Hider: in the αth step, if the Seeker asks the undetermined pair e_α = {i, j} with i < j < ω, then the Hider says "yes" iff either

• If
$$F \subset [\omega]^2$$
 and $j \in \omega$, let

$$\deg_{F}(j) = |\{i \in \omega : \{i, j\} \in F\}|$$
$$\deg_{F}^{<}(j) = |\{i < j : \{i, j\} \in F\}|$$

 The strategy of the Hider: in the *α*th step, if the Seeker asks the undetermined pair *e*_α = {*i*, *j*} with *i* < *j* < *ω*, then the Hider says "yes" iff either

(a) i < n and $\deg_{E_{\alpha}}(i) < n$, or j < n and $\deg_{E_{\alpha}}(j) < n$

• If
$$F \subset [\omega]^2$$
 and $j \in \omega$, let

$$\deg_{F}(j) = |\{i \in \omega : \{i, j\} \in F\}|$$
$$\deg_{F}^{<}(j) = |\{i < j : \{i, j\} \in F\}|$$

 The strategy of the Hider: in the *α*th step, if the Seeker asks the undetermined pair *e*_α = {*i*, *j*} with *i* < *j* < *ω*, then the Hider says "yes" iff either

(a) i < n and $\deg_{E_{\alpha}}(i) < n$, or j < n and $\deg_{E_{\alpha}}(j) < n$ or

• If
$$F \subset [\omega]^2$$
 and $j \in \omega$, let

$$\deg_{F}(j) = |\{i \in \omega : \{i, j\} \in F\}|$$
$$\deg_{F}^{<}(j) = |\{i < j : \{i, j\} \in F\}|$$

 The strategy of the Hider: in the αth step, if the Seeker asks the undetermined pair e_α = {i, j} with i < j < ω, then the Hider says "yes" iff either

(a) i < n and $\deg_{E_{\alpha}}(i) < n$, or j < n and $\deg_{E_{\alpha}}(j) < n$

or

(b) $\deg_{E_{\alpha}}(j) + \deg_{U_{\alpha}}^{<}(j) = n.$

• If
$$F \subset [\omega]^2$$
 and $j \in \omega$, let

$$\deg_{F}(j) = |\{i \in \omega : \{i, j\} \in F\}|$$
$$\deg_{F}^{<}(j) = |\{i < j : \{i, j\} \in F\}|$$

 The strategy of the Hider: in the *α*th step, if the Seeker asks the undetermined pair *e*_α = {*i*, *j*} with *i* < *j* < *ω*, then the Hider says "yes" iff either

(a) i < n and $\deg_{E_{\alpha}}(i) < n$, or j < n and $\deg_{E_{\alpha}}(j) < n$

or

(b) $\deg_{E_{\alpha}}(j) + \deg_{U_{\alpha}}^{<}(j) = n.$

What about uncountable vertex sets?

G contains $K_{1,n}$

We do not know if the property *G* contains $K_{1,n}$ is elusive or not.

G contains $K_{1,n}$

We do not know if the property *G* contains $K_{1,n}$ is elusive or not.

Theorem (1) For each natural number $n \ge 2$ the monotone graph property $K_{1,n}$

" G contains K_{1,n}"

is \mathcal{I}_n -elusive on the vertex set ω , where

$$\mathcal{I}_n = \{ \boldsymbol{E} \subset [\boldsymbol{\omega}]^2 : \neg \exists \boldsymbol{B} \in [\boldsymbol{\omega}]^n \ \boldsymbol{E} \cup [\boldsymbol{B}]^2 = [\boldsymbol{\omega}]^2 \}.$$

The property *G* contains $K_{1,n}$ is \mathcal{I}_n -elusive.

The property *G* contains $K_{1,n}$ is \mathcal{I}_n -elusive.

• Hider says "yes" for $e_{\alpha} = \{i, j\}$ iff $\deg_{G_{\alpha}}(i), \deg_{G_{\alpha}}(j) < n-1$

- Hider says "yes" for $e_{\alpha} = \{i, j\}$ iff $\deg_{G_{\alpha}}(i), \deg_{G_{\alpha}}(j) < n 1$
- G_{β} does not contain $K_{1,n}$.

- Hider says "yes" for $e_{\alpha} = \{i, j\}$ iff $\deg_{G_{\alpha}}(i), \deg_{G_{\alpha}}(j) < n 1$
- G_{β} does not contain $K_{1,n}$.
- Fix α < β and assume that d_{E_α∪U_α}(v) ≤ n − 1 for each v ∈ ω.

- Hider says "yes" for $e_{\alpha} = \{i, j\}$ iff $\deg_{G_{\alpha}}(i), \deg_{G_{\alpha}}(j) < n 1$
- G_{β} does not contain $K_{1,n}$.
- Fix α < β and assume that d_{E_α∪U_α}(v) ≤ n − 1 for each v ∈ ω.
- $A = \{v \in \omega : d_{E_{\alpha}}(v) = n 1\}$ and $B = \{v \in \omega : d_{E_{\alpha}}(v) \le n 2\}.$

- Hider says "yes" for $e_{\alpha} = \{i, j\}$ iff $\deg_{G_{\alpha}}(i), \deg_{G_{\alpha}}(j) < n 1$
- G_{β} does not contain $K_{1,n}$.
- Fix α < β and assume that d<sub>E_α∪U_α(ν) ≤ n − 1 for each ν ∈ ω.
 </sub>
- $A = \{v \in \omega : d_{E_{\alpha}}(v) = n 1\}$ and $B = \{v \in \omega : d_{E_{\alpha}}(v) \le n 2\}.$
- $N_{\alpha} \cap [B]^2 = \emptyset$

- Hider says "yes" for $e_{\alpha} = \{i, j\}$ iff $\deg_{G_{\alpha}}(i), \deg_{G_{\alpha}}(j) < n 1$
- G_{β} does not contain $K_{1,n}$.
- Fix α < β and assume that d<sub>E_α∪U_α(v) ≤ n − 1 for each v ∈ ω.
 </sub>
- $A = \{v \in \omega : d_{E_{\alpha}}(v) = n 1\}$ and $B = \{v \in \omega : d_{E_{\alpha}}(v) \le n 2\}$.
- $N_{\alpha} \cap [B]^2 = \emptyset$
- |B| ≤ n.

- Hider says "yes" for $e_{\alpha} = \{i, j\}$ iff $\deg_{G_{\alpha}}(i), \deg_{G_{\alpha}}(j) < n 1$
- G_{β} does not contain $K_{1,n}$.
- Fix α < β and assume that d_{Eα∪Uα}(v) ≤ n − 1 for each v ∈ ω.
- $A = \{v \in \omega : d_{E_{\alpha}}(v) = n 1\}$ and $B = \{v \in \omega : d_{E_{\alpha}}(v) \le n 2\}$.
- $N_{lpha} \cap [B]^2 = \emptyset$
- $|B| \le n$.

Otherwise $d_{E_{\alpha}\cup U_{\alpha}}(b)\geq |B|-1\geq n$ for $b\in B$).

- Hider says "yes" for $e_{\alpha} = \{i, j\}$ iff $\deg_{G_{\alpha}}(i), \deg_{G_{\alpha}}(j) < n 1$
- G_{β} does not contain $K_{1,n}$.
- Fix α < β and assume that d_{Eα∪Uα}(v) ≤ n − 1 for each v ∈ ω.
- $A = \{v \in \omega : d_{E_{\alpha}}(v) = n-1\}$ and $B = \{v \in \omega : d_{E_{\alpha}}(v) \le n-2\}$.
- $N_{\alpha} \cap [B]^2 = \emptyset$
- $|B| \le n$. Otherwise $d_{E_{\alpha} \cup U_{\alpha}}(b) \ge |B| - 1 \ge n$ for $b \in B$).
- $[A, \omega] \subset P_{\alpha}$ (Otherwise) $\{i, j\} \in U_{\alpha} \cap [A, \omega]$ with $i \in A$ implies $d_{E_{\alpha} \cup U_{\alpha}}(i) \ge n$.

- Hider says "yes" for $e_{\alpha} = \{i, j\}$ iff $\deg_{G_{\alpha}}(i), \deg_{G_{\alpha}}(j) < n 1$
- G_{β} does not contain $K_{1,n}$.
- Fix α < β and assume that d<sub>E_α∪U_α(v) ≤ n − 1 for each v ∈ ω.
 </sub>
- $A = \{v \in \omega : d_{E_{\alpha}}(v) = n-1\}$ and $B = \{v \in \omega : d_{E_{\alpha}}(v) \le n-2\}$.
- $N_{\alpha} \cap [B]^2 = \emptyset$
- $|B| \le n$. Otherwise $d_{E_{\alpha} \cup U_{\alpha}}(b) \ge |B| - 1 \ge n$ for $b \in B$).
- $[A, \omega] \subset P_{\alpha}$ (Otherwise) $\{i, j\} \in U_{\alpha} \cap [A, \omega]$ with $i \in A$ implies $d_{E_{\alpha} \cup U_{\alpha}}(i) \ge n$.

•
$$P_{\alpha} \cup [B]^2 = [\omega]^2$$
 and so $P_{\alpha} \notin \mathcal{I}_n$.

Problem Decide if the the following property are elusive or not:

Problem Decide if the the following property are elusive or not:

• G contains P₃

Problem

Decide if the the following property are elusive or not:

- G contains P₃
- G contains K_l

Problem

Decide if the the following property are elusive or not:

- G contains P₃
- G contains K_l
- G is connected

Problem

Decide if the the following property are elusive or not:

- G contains P₃
- G contains K_l
- G is connected

Find the right AKR-style statement/conjecture for infinite graphs