Generalized Ultrafilters
world logic day

Bertalan Pécsi

Jan. 2026




Contents

Ultrafilters
Monads

Multi-valued logic



Ultrafilters




Ultrafilters

An ultrafilter on a set X can be seen as

m a morphism 2X — 2 in the category BA of Boolean Algebras.




Ultrafilters

An ultrafilter on a set X can be seen as

m a morphism 2X — 2 in the category BA of Boolean Algebras.

where the power set is identified with the Cartesian product

2X:H2

xeX




Ultrafilters

An ultrafilter on a set X can be seen as

m a morphism 2X — 2 in the category BA of Boolean Algebras.

where the power set is identified with the Cartesian product

2X:H2

xeX

B(X) = {ultrafilters on X}.




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.

Def. A generalized ultrafilter on a set X is




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.

Def. A generalized ultrafilter on a set X is

m a morphism LX — L in the category L.




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.

Def. A generalized ultrafilter on a set X is
m a morphism LX — L in the category L.

where X means the categorical product H L
xeX




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.
Def. A generalized ultrafilter on a set X is

m a morphism LX — L in the category L.

where LX means the categorical product H L
xeX

with canonical arrows 7y : LX — L for each x € X,
satisfying
m for any X-many arrows (ay : A — L)xex there exists a unique
a: A — LX which makes ay = 7y 0 a.




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.

Def. A generalized ultrafilter on a set X is

m a morphism LX — L in the category L.

Let v(X) := {generalized ultrafilters} = {LX — L morphisms} .




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.

Def. A generalized ultrafilter on a set X is
m a morphism LX — L in the category L.

Let v(X) := {generalized ultrafilters} = {LX — L morphisms} .

Example:




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.

Def. A generalized ultrafilter on a set X is
m a morphism LX — L in the category L.

Let v(X) := {generalized ultrafilters} = {LX — L morphisms} .

Example:

m Let L := 2 but £ be the cat. of k-complete Boolean algebras.




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.

Def. A generalized ultrafilter on a set X is

m a morphism LX — L in the category L.

Let v(X) := {generalized ultrafilters} = {LX — L morphisms} .

Example:

m Let L := 2 but £ be the cat. of k-complete Boolean algebras.
Then ~(X) = { k-complete ultrafilters on X }.




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.

Def. A generalized ultrafilter on a set X is
m a morphism LX — L in the category L.

Let v(X) := {generalized ultrafilters} = {LX — L morphisms} .

Properties:




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.

Def. A generalized ultrafilter on a set X is
m a morphism LX — L in the category L.

Let v(X) := {generalized ultrafilters} = {LX — L morphisms} .

Properties:

We get a canonical function X — v(X), x — 7.




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.

Def. A generalized ultrafilter on a set X is
m a morphism LX — L in the category L.

Let v(X) := {generalized ultrafilters} = {LX — L morphisms} .

Properties:

We get a canonical function X — v(X), x — 7.
Any f : X — ~(Y) canonically extends to y(X) — y(Y).




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.
Def. A generalized ultrafilter on a set X is

m a morphism LX — L in the category L.
Let v(X) := {generalized ultrafilters} = {LX — L morphisms} .

Properties:
We get a canonical function X — v(X), x — 7.
Any f : X — ~(Y) canonically extends to y(X) — y(Y).

Consider the arrows (f(x) : LY — L)xex, they induce
a unique arrow f : LY — X, which in turn induces
of : y(X) = y(Y) that satisfies m o f = f(x) .




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.
Def. A generalized ultrafilter on a set X is

m a morphism LX — L in the category L.
Let v(X) := {generalized ultrafilters} = {LX — L morphisms} .

Properties:
We get a canonical function X — v(X), x — 7.
Any f : X — ~(Y) canonically extends to y(X) — y(Y).

A semigroup operation on a set S induces a semigroup on y(S).

v O




Monads




Monads

Def. [Kleisli] A monad on a category C consists of:
m a function T : ObC — ObC
m a morphism 7. : ¢ — T(c) for each c € ObC

m an operation * that assigns to any f : x — T(y) an arrow
*:T(x)— T(y).

that satisfy




Monads

Def. [Kleisli] A monad on a category C consists of:
m a function T : ObC — Ob(C
m a morphism 7. : ¢ — T(c) for each c € ObC
m an operation * that assigns to any f : x — T(y) an arrow
*:T(x)— T(y).
that satisfy

A ffon = f
B " = 17y
forf:x— T(y)andg:y — T(2).




Monads

Def. [Kleisli] A monad on a category C consists of:
m a function T : ObC — Ob(C
m a morphism 7. : ¢ — T(c) for each c € ObC
m an operation * that assigns to any f : x — T(y) an arrow
*:T(x)— T(y).
that satisfy

ffomne = f

Bncof = f

B(g-of) = g*of*
forf:x— T(y)andg:y — T(2).




Monads

Def. [Kleisli] A monad on a category C consists of:
m a function T : ObC — Ob(C
m a morphism 7. : ¢ — T(c) for each c € ObC
m an operation * that assigns to any f : x — T(y) an arrow
*:T(x)— T(y).
that satisfy

A ffon = f
B " = 17y
forf:x— T(y)andg:y — T(2).




Monads and generalized ultrafilters

Theorem. Every monad on Set is naturally isomorphic to a y for
some £ and L € Ob L.




Monads and generalized ultrafilters

Theorem. Every monad on Set is naturally isomorphic to a y for
some £ and L € Ob L.

Proof: Relies on the fact that every set X is = H 1
xeX
and uses the Kleisli category construction of the given monad.




Multi-valued logic




Propositional Calculus over L

Assume that L has free objects,




Propositional Calculus over L

Assume that L has free objects,
via the left adjoint F : Set — L of a given functor U : £ — Set




Propositional Calculus over L

Assume that L has free objects,
via the left adjoint F : Set — L of a given functor U : £ — Set

m Formulas with propositional variables in X:
elements of F(X)




Propositional Calculus over L

Assume that L has free objects,
via the left adjoint F : Set — L of a given functor U : £ — Set

m Formulas with propositional variables in X:
elements of Uo F (X)




Propositional Calculus over L

Assume that L has free objects,
via the left adjoint F : Set — L of a given functor U : £ — Set

m Formulas with propositional variables in X:
elements of F(X)

m Any evaluation X — L extends to F(X) — L arrow in L.




Propositional Calculus over L

Assume that L has free objects,
via the left adjoint F : Set — L of a given functor U : £ — Set

m Formulas with propositional variables in X:
elements of F(X)

m Any evaluation X — U(L) “extends” to an F(X) — L arrow in L.




Propositional Calculus over L

Assume that L has free objects,
via the left adjoint F : Set — L of a given functor U : £ — Set

m Formulas with propositional variables in X:
elements of F(X)

m Any evaluation X — L extends to F(X) — L arrow in L.




Generalized Ultraproduct

An n-ary L-relation on a set A is an arrow A" — L.




Generalized Ultraproduct

An n-ary L-relation on a set A is an arrow A" — L.

We assume a binary equality(-like) L-relation = is given with each
such “first order model” A.




Generalized Ultraproduct

An n-ary L-relation on a set A is an arrow A" — L.

We assume a binary equality(-like) L-relation = is given with each
such “first order model” A.

Def. Given models (A;, =) for each i € | and an L-ultrafilter U on
the index set /, the ultraproduct of A;'s is

(HA,', %> where ~ = U o ~;

i€l

iel




Generalized Ultraproduct

An n-ary L-relation on a set A is an arrow A" — L.

We assume a binary equality(-like) L-relation = is given with each
such “first order model” A.

Def. Given models (A;, ;) for each i € | and an L-ultrafilter U on
the index set /, the ultraproduct of A;'s is

(e

~
o S

(HA,-, z) where =~ =

i€l




	Ultrafilters
	Monads
	Multi-valued logic

