Generalized Ultrafilters
world logic day

Bertalan Pécsi

Jan. 2026




Contents

Ultrafilters
Monads

Multi-valued logic



Ultrafilters




Ultrafilters

An ultrafilter on a set X can be seen as

m a morphism 2X — 2 in the category BA of Boolean Algebras.




Ultrafilters

An ultrafilter on a set X can be seen as

m a morphism 2X — 2 in the category BA of Boolean Algebras.

where the power set is identified with the Cartesian product

2X:H2

xeX




Ultrafilters
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B(X) = {ultrafilters on X}.
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Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.
Def. A generalized ultrafilter on a set X is

m a morphism LX — L in the category L.

where LX means the categorical product H L
xeX

with canonical arrows 7y : LX — L for each x € X,
satisfying
m for any X-many arrows (ay : A — L)xex there exists a unique
a: A — LX which makes ay = 7y 0 a.
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Fix an object L of an arbitrary category £ which has products.

Def. A generalized ultrafilter on a set X is

m a morphism LX — L in the category L.

Let v(X) := {generalized ultrafilters} = {LX — L morphisms} .

Example:

m Let L := 2 but £ be the cat. of k-complete Boolean algebras.
Then ~(X) = { k-complete ultrafilters on X }.
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Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.
Def. A generalized ultrafilter on a set X is

m a morphism LX — L in the category L.
Let v(X) := {generalized ultrafilters} = {LX — L morphisms} .

Properties:
We get a canonical function X — v(X), x — 7.
Any f : X — ~(Y) canonically extends to y(X) — y(Y).

Consider the arrows (f(x) : LY — L)xex, they induce
a unique arrow f : LY — X, which in turn induces
of : y(X) = y(Y) that satisfies m o f = f(x) .




Generalized ultrafilters

Fix an object L of an arbitrary category £ which has products.
Def. A generalized ultrafilter on a set X is

m a morphism LX — L in the category L.
Let v(X) := {generalized ultrafilters} = {LX — L morphisms} .

Properties:
We get a canonical function X — v(X), x — 7.
Any f : X — ~(Y) canonically extends to y(X) — y(Y).

A semigroup operation on a set S induces a semigroup on y(S).

v O
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Monads and generalized ultrafilters

Theorem. Every monad on Set is naturally isomorphic to a y for
some £ and L € Ob L.

Proof: Relies on the fact that every set X is = H 1
xeX
and uses the Kleisli category construction of the given monad.
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An n-ary L-relation on a set A is an arrow A" — L.

We assume a binary equality(-like) L-relation = is given with each
such “first order model” A.

Def. Given models (A;, ;) for each i € | and an L-ultrafilter U on
the index set /, the ultraproduct of A;'s is

(e

~
o S

(HA,-, z) where =~ =
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