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Ultrafilters

An ultrafilter on a set X can be seen as

a morphism 2X → 2 in the category BA of Boolean Algebras.

where the power set is identified with the Cartesian product

2X =
∏
x∈X

2

β(X ) = {ultrafilters on X} .
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Generalized ultrafilters

Fix an object L of an arbitrary category L which has products.

Def. A generalized ultrafilter on a set X is

a morphism LX → L in the category L.

Let γ(X ) := {generalized ultrafilters} =
{
LX → L morphisms

}
.

Properties:

1 We get a canonical function X → γ(X ), x 7→ πx.

2 Any f : X → γ(Y ) canonically extends to γ(X ) → γ(Y ).

3 A semigroup operation on a set S induces a semigroup on γ(S).
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Fix an object L of an arbitrary category L which has products.

Def. A generalized ultrafilter on a set X is
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where LX means the categorical product
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with canonical arrows πx : LX → L for each x ∈ X ,
satisfying
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LX → L morphisms

}
.

Properties:

1 We get a canonical function X → γ(X ), x 7→ πx.

2 Any f : X → γ(Y ) canonically extends to γ(X ) → γ(Y ).

Consider the arrows (f (x) : LY → L)x∈X , they induce
a unique arrow f̂ : LY → LX , which in turn induces
◦ f̂ : γ(X ) → γ(Y ) that satisfies πx ◦ f̂ = f (x) .
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Monads

Def. [Kleisli] A monad on a category C consists of:

a function T : Ob C → Ob C
a morphism ηc : c → T (c) for each c ∈ Ob C
an operation ∗ that assigns to any f : x → T (y) an arrow
f ∗ : T (x) → T (y) .

that satisfy

1 f ∗ ◦ ηx = f

2

3 (g∗ ◦ f )∗ = g∗ ◦ f ∗

for f : x → T (y) and g : y → T (z) .
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Monads and generalized ultrafilters

Theorem. Every monad on Set is naturally isomorphic to a γ for
some L and L ∈ ObL.

Proof: Relies on the fact that every set X is ∼=
∐
x∈X

1

and uses the Kleisli category construction of the given monad.
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Multi-valued logic
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Propositional Calculus over L

Assume that L has free objects,

via the left adjoint F : Set → L of a given functor U : L → Set

Formulas with propositional variables in X :
elements of

Any evaluation
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Generalized Ultraproduct

An n-ary L-relation on a set A is an arrow An → L.

We assume a binary equality(-like) L-relation ≈ is given with each
such“first order model”A.

Def. Given models (Ai , ≈i ) for each i ∈ I and an L-ultrafilter U on
the index set I , the ultraproduct of Ai ’s is(∏

i∈I
Ai , ≈

)
where ≈ := U ◦

∏
i∈I

≈i

(∏
i∈I

Ai

)2
∼=−→

∏
i∈I

(Ai )
2

∏
i ≈i−→

∏
i∈I

L
U−→ L .
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