
Generalized Ultrafilters

world logic day

Bertalan Pécsi

Jan. 2026

Contents

1 Ultrafilters

2 Monads

3 Multi-valued logic

Ultrafilters

Ultrafilters

An ultrafilter on a set X can be seen as

- a morphism $\mathbf{2}^X \rightarrow \mathbf{2}$ in the category \mathcal{BA} of Boolean Algebras.

Ultrafilters

An ultrafilter on a set X can be seen as

- a morphism $2^X \rightarrow 2$ in the category \mathcal{BA} of Boolean Algebras.

where the power set is identified with the Cartesian product

$$2^X = \prod_{x \in X} 2$$

Ultrafilters

An ultrafilter on a set X can be seen as

- a morphism $\mathbf{2}^X \rightarrow \mathbf{2}$ in the category \mathcal{BA} of Boolean Algebras.

where the power set is identified with the Cartesian product

$$\mathbf{2}^X = \prod_{x \in X} \mathbf{2}$$

$$\beta(X) = \{\text{ultrafilters on } X\}.$$

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

- a morphism $L^X \rightarrow L$ in the category \mathcal{L} .

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

- a morphism $L^X \rightarrow L$ in the category \mathcal{L} .

where L^X means the categorical product $\prod_{x \in X} L$

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

- a morphism $L^X \rightarrow L$ in the category \mathcal{L} .

where L^X means the categorical product $\prod_{x \in X} L$

with canonical arrows $\pi_x : L^X \rightarrow L$ for each $x \in X$,
satisfying

- for any X -many arrows $(\alpha_x : A \rightarrow L)_{x \in X}$ there exists a unique
 $\alpha : A \rightarrow L^X$ which makes $\alpha_x = \pi_x \circ \alpha$.

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

- a morphism $L^X \rightarrow L$ in the category \mathcal{L} .

Let $\gamma(X) := \{\text{generalized ultrafilters}\} = \{L^X \rightarrow L \text{ morphisms}\}$.

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

- a morphism $L^X \rightarrow L$ in the category \mathcal{L} .

Let $\gamma(X) := \{\text{generalized ultrafilters}\} = \{L^X \rightarrow L \text{ morphisms}\}$.

Example:

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

- a morphism $L^X \rightarrow L$ in the category \mathcal{L} .

Let $\gamma(X) := \{\text{generalized ultrafilters}\} = \{L^X \rightarrow L \text{ morphisms}\}$.

Example:

- Let $L := \mathbf{2}$ but \mathcal{L} be the cat. of κ -complete Boolean algebras.

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

- a morphism $L^X \rightarrow L$ in the category \mathcal{L} .

Let $\gamma(X) := \{\text{generalized ultrafilters}\} = \{L^X \rightarrow L \text{ morphisms}\}$.

Example:

- Let $L := \mathbf{2}$ but \mathcal{L} be the cat. of κ -complete Boolean algebras.

Then $\gamma(X) = \{ \kappa\text{-complete ultrafilters on } X \}$.

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

- a morphism $L^X \rightarrow L$ in the category \mathcal{L} .

Let $\gamma(X) := \{\text{generalized ultrafilters}\} = \{L^X \rightarrow L \text{ morphisms}\}$.

Properties:

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

- a morphism $L^X \rightarrow L$ in the category \mathcal{L} .

Let $\gamma(X) := \{\text{generalized ultrafilters}\} = \{L^X \rightarrow L \text{ morphisms}\}$.

Properties:

- 1 We get a canonical function $X \rightarrow \gamma(X)$, $x \mapsto \pi_x$.

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

- a morphism $L^X \rightarrow L$ in the category \mathcal{L} .

Let $\gamma(X) := \{\text{generalized ultrafilters}\} = \{L^X \rightarrow L \text{ morphisms}\}$.

Properties:

- 1 We get a canonical function $X \rightarrow \gamma(X)$, $x \mapsto \pi_x$.
- 2 Any $f : X \rightarrow \gamma(Y)$ canonically extends to $\gamma(X) \rightarrow \gamma(Y)$.

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

- a morphism $L^X \rightarrow L$ in the category \mathcal{L} .

Let $\gamma(X) := \{\text{generalized ultrafilters}\} = \{L^X \rightarrow L \text{ morphisms}\}$.

Properties:

- 1 We get a canonical function $X \rightarrow \gamma(X)$, $x \mapsto \pi_x$.
- 2 Any $f : X \rightarrow \gamma(Y)$ canonically extends to $\gamma(X) \rightarrow \gamma(Y)$.

Consider the arrows $(f(x) : L^Y \rightarrow L)_{x \in X}$, they induce
a unique arrow $\hat{f} : L^Y \rightarrow L^X$, which in turn induces
 $\circ \hat{f} : \gamma(X) \rightarrow \gamma(Y)$ that satisfies $\pi_x \circ \hat{f} = f(x)$.

Generalized ultrafilters

Fix an object L of an arbitrary category \mathcal{L} which has products.

Def. A *generalized ultrafilter* on a set X is

- a morphism $L^X \rightarrow L$ in the category \mathcal{L} .

Let $\gamma(X) := \{\text{generalized ultrafilters}\} = \{L^X \rightarrow L \text{ morphisms}\}.$

Properties:

- 1 We get a canonical function $X \rightarrow \gamma(X)$, $x \mapsto \pi_x$.
- 2 Any $f : X \rightarrow \gamma(Y)$ canonically extends to $\gamma(X) \rightarrow \gamma(Y)$.
- 3 A semigroup operation on a set S induces a semigroup on $\gamma(S)$.

Monads

Monads

Def. [Kleisli] A *monad* on a category \mathcal{C} consists of:

- a function $T : \text{Ob } \mathcal{C} \rightarrow \text{Ob } \mathcal{C}$
- a morphism $\eta_c : c \rightarrow T(c)$ for each $c \in \text{Ob } \mathcal{C}$
- an operation $*$ that assigns to any $f : x \rightarrow T(y)$ an arrow $f^* : T(x) \rightarrow T(y)$.

that satisfy

Monads

Def. [Kleisli] A *monad* on a category \mathcal{C} consists of:

- a function $T : \text{Ob } \mathcal{C} \rightarrow \text{Ob } \mathcal{C}$
- a morphism $\eta_c : c \rightarrow T(c)$ for each $c \in \text{Ob } \mathcal{C}$
- an operation $*$ that assigns to any $f : x \rightarrow T(y)$ an arrow $f^* : T(x) \rightarrow T(y)$.

that satisfy

- 1 $f^* \circ \eta_x = f$
- 2 $\eta_x^* = 1_{T(x)}$
- 3 $(g^* \circ f)^* = g^* \circ f^*$
for $f : x \rightarrow T(y)$ and $g : y \rightarrow T(z)$.

Monads

Def. [Kleisli] A *monad* on a category \mathcal{C} consists of:

- a function $T : \text{Ob } \mathcal{C} \rightarrow \text{Ob } \mathcal{C}$
- a morphism $\eta_c : c \rightarrow T(c)$ for each $c \in \text{Ob } \mathcal{C}$
- an operation $*$ that assigns to any $f : x \rightarrow T(y)$ an arrow $f^* : T(x) \rightarrow T(y)$.

that satisfy

- 1 $f^* \circ \eta_x = f$
- 2 $\eta_x^* \circ f = f$
- 3 $(g^* \circ f)^* = g^* \circ f^*$
for $f : x \rightarrow T(y)$ and $g : y \rightarrow T(z)$.

Monads

Def. [Kleisli] A *monad* on a category \mathcal{C} consists of:

- a function $T : \text{Ob } \mathcal{C} \rightarrow \text{Ob } \mathcal{C}$
- a morphism $\eta_c : c \rightarrow T(c)$ for each $c \in \text{Ob } \mathcal{C}$
- an operation $*$ that assigns to any $f : x \rightarrow T(y)$ an arrow $f^* : T(x) \rightarrow T(y)$.

that satisfy

- 1 $f^* \circ \eta_x = f$
- 2 $\eta_x^* = 1_{T(x)}$
- 3 $(g^* \circ f)^* = g^* \circ f^*$
for $f : x \rightarrow T(y)$ and $g : y \rightarrow T(z)$.

Monads and generalized ultrafilters

Theorem. Every monad on $\mathcal{S}et$ is naturally isomorphic to a γ for some \mathcal{L} and $L \in \text{Ob } \mathcal{L}$.

Monads and generalized ultrafilters

Theorem. Every monad on $\mathcal{S}et$ is naturally isomorphic to a γ for some \mathcal{L} and $L \in \text{Ob } \mathcal{L}$.

Proof: Relies on the fact that every set X is $\cong \coprod_{x \in X} 1$

and uses the *Kleisli category construction* of the given monad.

Multi-valued logic

Propositional Calculus over \mathcal{L}

Assume that \mathcal{L} has *free objects*,

Propositional Calculus over \mathcal{L}

Assume that \mathcal{L} has *free objects*,
via the left adjoint $F : \mathcal{Set} \rightarrow \mathcal{L}$ of a given functor $U : \mathcal{L} \rightarrow \mathcal{Set}$

Propositional Calculus over \mathcal{L}

Assume that \mathcal{L} has *free objects*,
via the left adjoint $F : \mathcal{Set} \rightarrow \mathcal{L}$ of a given functor $U : \mathcal{L} \rightarrow \mathcal{Set}$

- Formulas with propositional variables in X :
elements of $F(X)$

Propositional Calculus over \mathcal{L}

Assume that \mathcal{L} has *free objects*,
via the left adjoint $F : \mathcal{Set} \rightarrow \mathcal{L}$ of a given functor $U : \mathcal{L} \rightarrow \mathcal{Set}$

- Formulas with propositional variables in X :
elements of $U \circ F(X)$

Propositional Calculus over \mathcal{L}

Assume that \mathcal{L} has *free objects*,
via the left adjoint $F : \mathcal{Set} \rightarrow \mathcal{L}$ of a given functor $U : \mathcal{L} \rightarrow \mathcal{Set}$

- Formulas with propositional variables in X :
elements of $F(X)$
- Any evaluation $X \rightarrow L$ extends to $F(X) \rightarrow L$ arrow in \mathcal{L} .

Propositional Calculus over \mathcal{L}

Assume that \mathcal{L} has *free objects*,

via the left adjoint $F : \mathcal{Set} \rightarrow \mathcal{L}$ of a given functor $U : \mathcal{L} \rightarrow \mathcal{Set}$

- Formulas with propositional variables in X :
elements of $F(X)$
- Any evaluation $X \rightarrow U(L)$ “extends” to an $F(X) \rightarrow L$ arrow in \mathcal{L} .

Propositional Calculus over \mathcal{L}

Assume that \mathcal{L} has *free objects*,
via the left adjoint $F : \mathcal{Set} \rightarrow \mathcal{L}$ of a given functor $U : \mathcal{L} \rightarrow \mathcal{Set}$

- Formulas with propositional variables in X :
elements of $F(X)$
- Any evaluation $X \rightarrow L$ extends to $F(X) \rightarrow L$ arrow in \mathcal{L} .

Generalized Ultraproduct

An n -ary L -relation on a set A is an arrow $A^n \rightarrow L$.

Generalized Ultraproduct

An n -ary L -relation on a set A is an arrow $A^n \rightarrow L$.

We assume a binary equality(-like) L -relation \approx is given with each such “first order model” A .

Generalized Ultraproduct

An n -ary L -relation on a set A is an arrow $A^n \rightarrow L$.

We assume a binary equality(-like) L -relation \approx is given with each such “first order model” A .

Def. Given models (A_i, \approx_i) for each $i \in I$ and an L -ultrafilter U on the index set I , the ultraproduct of A_i 's is

$$\left(\prod_{i \in I} A_i, \approx \right) \text{ where } \approx := U \circ \prod_{i \in I} \approx_i$$

Generalized Ultraproduct

An n -ary L -relation on a set A is an arrow $A^n \rightarrow L$.

We assume a binary equality(-like) L -relation \approx is given with each such “first order model” A .

Def. Given models (A_i, \approx_i) for each $i \in I$ and an L -ultrafilter U on the index set I , the ultraproduct of A_i ’s is

$$\left(\prod_{i \in I} A_i, \approx \right) \text{ where } \approx := U \circ \prod_{i \in I} \approx_i :$$

$$\left(\prod_{i \in I} A_i \right)^2 \xrightarrow{\cong} \prod_{i \in I} (A_i)^2 \xrightarrow{\prod_i \approx_i} \prod_{i \in I} L \xrightarrow{U} L.$$

