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Parametricity is a way to express representation-independence. For example, in a language that satisfies
parametricity, there is only one function of type Π(A : Type).A → A. This is the type of polymorphic functions
which for every type A, compute an element of A from an element of A. The idea is that representation-
independent functions cannot inspect A, the only thing they can do is to return the element of A that they take
as input. Similarly, in a language with parametricity, there is no element of the type Π(A : Type).A, and there
are two elements of the type Π(A : Type).A → A → A. The type Π(A : Type).A → (A → A) → A is the type
of abstract natural numbers, equivalent to the definition with Peano axioms. When working with such natural
numbers, we do not need to choose between representations by Zermelo or von Neumann.

Parametricity was formalised by Reynolds [7] for the polymorphic lambda calculus as relation-preservation:
polymorphic functions respect arbitrary relations. This implies the above example consequences, which can all
be expressed for the polymorphic lambda calculus (System F). Bernardy et al. [3] extended parametricity to type
theory, which is a full-scale language for the formalisation of mathematics, thus parametricity statements can
be expressed in the language of type theory itself. However, parametricity is still external : inside type theory,
we cannot prove that there is only one element of the type Π(A : Type).A → A, this is only a metatheorem.
Internalising parametricity is difficult, because once we have a term witnessing parametricity in the language, it
has to be parametric itself, and this induces higher dimensional structure: type theory has to be able to compute
with arbitrary dimensional cubes. Type theories with internal parametricity have this higher dimensional
structure explicitly built-in ([4, 5, 2, 6]).

In this talk I will introduce a new type theory with internal parametricity where the higher dimensional
structure is emergent rather than built-in [1].
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