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In vanishing error regime, separate encoding of independent problems is optimal. A natural illustration of
this property is the linearization of optimal rates, which holds for both source and channel coding problems. This
property does not hold in the zero error regime. Specifically, in the context of channel coding, Haemers (1979) shows
a counterexample based on the Schläfli graph, where joint encoding of independent problems results in higher zero-
error capacity C0 than separate encoding. Determining when separate encoding is optimal, or equivalently when the
linearization holds, remains an open problem in the zero error regime. Recently, Schrijver (2023) and (Wigderson
and Zuiddam, 2023, Theorem 4.1) show that for all graphs G and G′,

C0(G) + C0(G
′) = C0(G ∧G′) ⇐⇒ log

(
2C0(G) + 2C0(G

′)
)
= C0(G ⊔G′), (1)

where ∧ denotes the AND product, and ⊔ denotes the disjoint union of graphs. In Charpenay et al. (2023), we
show that the equivalence (1) also holds for the complementary graph entropy H̄, which according to Alon and
Orlitsky (1996) and Koulgi et al. (2003), determines the optimal rate in the zero error Slepian and Wolf source
coding problem.

If these two results appear similar, they differ in that for C0 the linearization property only depends on charac-
teristic graphs, whereas for H̄ it may also depend on the probability distribution on the vertices of the graphs.

In this work, we establish the equivalence between the linearization of C0 and H̄ when the probability distribution
PV V ′ maximizes a third quantity: the zero error capacity relative to a distribution C(G ∧ G′, PV V ′). This crucial
notion, introduced in Csiszár and Körner (1981), is related to C0 via the result of (Gargano et al., 1994, Theorem
2), see also (Simonyi, 2001, Theorem 13.68), and is related to H̄ via the result of (Marton, 1993, Lemma 1). We
show that for such a distribution on the product of vertices, the linearization properties of C0, H̄ and C(G,P ) with
respect to the AND product, and to the disjoint union of graphs, are all equivalent.
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