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Tarskian Algebraic Logic – an area
interdisciplinary between logic, and algebra
(in fact the natural interface between
universal algebra and logic) with an
accompanying extremely rich geometry
that has a varying dimension possibly
transfinite–reflected in Tarski’s cylindric
algebras now better known as Concept
Algebras when applied to (the algebraization
of) sophisticated first order theories like
spacetime geometries.

The canonical examples of the so-called representable algebras, the cylindric
set algebra, provide a natural vehicle for Model Theory, since cylindrifications
reflect the semantics of existential quantifiers in logic, and are simply forming
cylinders that is to say projections in Geometry. Using cylindric set algebras
we approach Vaught’s conjecture.
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In 1961, Robert Vaught asked the following question: Given a complete theory
in a countable language, is it the case that it either has countably many or
2ℵ0 non-isomorphic countable models? By the number of non-isomorphic
countable models is meant the number of their isomorphism-types; that is
the number of equivalence classes of countable models w.r.t. the isomorphism
relation between structures. We shall just say “the number of countable
models"to mean the number of their isomorphism-types.

The positive answer to the question is more commonly know as Vaught’s
Conjecture. (Vaught’s conjecture has the reputation of being the most important
open problem in model theory.) However, some logicians do not agree to
this sweeping statement.
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Quoting Shelah on this: People say that settling Vaught’s conjecture is the
most important problem in Model theory, because it makes us understand
countable models of countable theories, which are the most important models.
We disagree with all three statements.

Morley proved that the number of countable models is either less than or
equal to the first uncountable cardinal (≤ ℵ1) or else it has the power of the
continuum. This is the best known (general) answer to Vaught’s question.
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Later other logicians confirmed Vaught’s conjecture in some special cases
of theories, for example:

1. (Shelah)ω-stable theories;
2. (Buechler )superstable theories of finite U-rank;
3. (Mayer)o-minimal theories;
4. (Miller) theories of linear orders with unary predicates;
5. (Steel)theories of trees.
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There are also attempts concerning special kinds of models to count and
also relations other than isomorphisms between models. Vaught’s conjecture
can be translated to counting the number of orbits corresponding to the
action of S∞, the symmetric group of ω, on the Polish space of countable
models. One way to obtain a positive result is to consider only isomorphisms
induced by a subgroup G of S∞ Vaught’s conjecture has been confirmed
when G is solvable; the best result in this type of investigations, is the case
when G is a lie group.

Our work here is inspired by Gabor Sági, who approached Vaught’s conjecture
using the machinery of algebraic logic.
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Cylindric set algebras are algebras whose elements are relations of a certain
pre-assigned arity, endowed with set–theoretic operations that utilize the
form of elements of the algebra as sets of sequences.

For a set V , B(V) denotes the Boolean set algebra ⟨℘(V),∪,∩,∼, ∅, V⟩. Let
U be a set and α an ordinal; α will be the dimension of the algebra. For
X ⊆ αU and i, j < α, let

CiX = {s ∈ αU : (∃t ∈ X)(t ≡i s)}

and
Dij = {s ∈ αU : si = sj}.

The algebra ⟨B(αU),Ci,Dij⟩i,j<α is called the full cylindric set algebra of dimension
α with unit (or greatest element) αU. Any subalgebra of the latter is called
a set algebra of dimension α.
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Examples of subalgebras of such set algebras arise naturally from models
of first order theories. Indeed, if M is a first order structure in a first order
signature L with α many variables, then one manufactures a cylindric set
algebra based on M as follows.

Let

ϕM = {s ∈ αM : M |= ϕ[s]},

(here M |= ϕ[s] means that s satisfies ϕ in M).

Then the set{ϕM : ϕ ∈ FmL} is a cylindric set algebra of dimensionα, where
FmL denotes the set of first order formulas taken in the signature L. To see
why, we have:

ϕM ∩ ψM = (ϕ ∧ ψ)M,
αM ∼ ϕM = (¬ϕ)M,

Ci(ϕ
M) = (∃viϕ)

M,

Dij = (xi = xj)
M.
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By Csα we denote the class of all subalgebras of full set algebras of dimension
α. The (equationally defined) CAα class is obtained from cylindric set algebras
by a process of abstraction and is defined by a finite schema of equations
that holds of course in the more concrete set algebras.
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Letα be an ordinal. By a cylindric algebra of dimensionα, briefly a CAα, we
mean an algebra

A = ⟨A,+, ·,−, 0, 1, ci, dij⟩κ,λ<α

where ⟨A,+, ·,−, 0, 1⟩ is a Boolean algebra such that 0, 1, and dij are distinguished
elements of A (for all j, i < α), − and ci are unary operations on A (for all
i < α), + and . are binary operations on A, and such that the following
equations are satisfied for any x, y ∈ A and any i, j, µ < α:

(C1) ci0 = 0,
(C2) x ≤ cix (i.e., x + cix = cix),
(C3) ci(x · ciy) = cix · ciy,
(C4) cicjx = cjcix,
(C5) dii = 1,
(C6) if i ̸= j, µ, then djµ = ci(dji · diµ),
(C7) if i ̸= j, then ci(dij · x) · ci(dij · −x) = 0.
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The varieties of representable algebras of dimensionα,αan ordinal is defined
as via RCAα = SPCsα,which turns out to be a variety, that is to say, closed
under H, as well.

Let α be an ordinal. An algebra A ∈ CAα is locally finite, if the dimension
set of every element x ∈ A is finite. The dimension set of x, or ∆x for
short, is the set {i ∈ α : cix ̸= x}. Locally finite algebras correspond to
Tarski–Lindenbaum algebras of (first order) formulas; in such algebras the
dimension set of (an equivalence class of) a formula reflects the number of
(finite) set of free variables in this formula.
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Tarski proved that every locally finite α-dimensional cylindric algebra is
representable, i.e. isomorphic to a subdirect product of set algebra each
of dimension α. Let Lfα denote the class of locally finite cylindric algebras.

Let RCAα stand for the class of isomorphic copies of subdirect products
of set algebras each of dimension α, or briefly, the class of α dimensional
representable cylindric algebras. Then Tarski’s theorem reads Lfα ⊆ RCAα.
This representation theorem is non-trivial; in fact it is equivalent to Gödel’s
celebrated Completeness Theorem. Completeness in the general case is a
huge subject that has provoked extensive research. A natural generalization
of Lfα is Dcα when α is infinite; A ∈ Dcα iff α ∼ ∆x is infinite for all x ∈ A.
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Let us first talk about Omitting types for the so-called rich languages where
there are infinitely many variables outside each (atomic) formula. We define
certain cardinals; it is consistent that such cardinal are uncountable. Throughout
this talk we do not assume the continuum hypothesis.

Definition:

1. A subset X ⊆ R is meager if it is a countable union of nowhere dense
sets. Let covK be the least cardinal κ such that R can be covered by κmany
nowhere dense sets. Letpbe the least cardinalκ such that there areκmany
meager sets of R whose union is not meager.
2. A Polish space is a topological space that is metrizable by a complete
separable metric.
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Examples of Polish spaces are R, the Cantor set ω2 and the Baire space ωω.
These are called real spaces because they are Baire isomorphic. Any second
countable compact Hausdorff space, like the Stone space of a countable
Boolean algebra, is a Polish space ( a complete separable metric space).



Theorem

Counting models omitting types for quantifier logics with infinitely many variables 17/67

1. The cardinals covK and p are uncountable cardinals, such
that p ≤ covK ≤ 2ω.

2. The cardinal covK is the least cardinal such the Baire
category theorem for Polish spaces fails, and it is also the
largest for which Martin’s axiom for countable Boolean
algebras holds.

3. If X is a Polish space, then it cannot be covered by < covK
many meager sets. If λ < p, and (Ai : i < λ) is a family of
meager subsets of X, then

⋃
i∈λ Ai is meager.
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Both cardinals covK and p have an extensive literature. It is consistent that
ω < p < covK ≤ 2ω so that the two cardinals are generally different, but
it is also consistent that they are equal; equality holds for example in the
Cohen real model of Solovay and Cohen. In this case, Martin’s axiom implies
that they are both equal to the continuum. Let A be any Boolean algebra.
The set of ultrafilters of A is denoted by U(A). The Stone topology makes
U(A) a compact Hausdorff space. We denote this space by A∗. Recall that
the Stone topology has as its basic open sets the sets {Nx : x ∈ A} where

Nx = {F ∈ U(A) : x ∈ F}.
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Let x ∈ A, Y ⊆ A and suppose that x =
∑

Y. We say that an ultrafilter
F ∈ U(A) preserves Y ⇐⇒ whenever x ∈ F, then y ∈ F for some y ∈ Y .
Now let A ∈ Lfω . For each i ∈ ω and x ∈ A let

Ui,x = {F ∈ U(A) : F preserves {si
jx : j ∈ ω}}.

Then

Ui,x = {F ∈ U(A) : cix ∈ F ⇒ (∃j ∈ ω)si
jx ∈ F}

= N−cix ∪
⋃
j<ω

Nsi
jx
.
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Let
H(A) =

⋂
i∈ω,x∈A

Ui,x(A) ∩
⋂
i ̸=j

N−dij .

It is clear that H(A) is a Gδ set in A∗. For F ∈ U(A), let

repF(x) = {τ ∈ ωω : sAτ x ∈ F},

for all x ∈ A. Here for τ ∈ ωω, sAτ x by definition is sAτ↾∆xx. The latter is well
defined because |∆x| < ω.When a ∈ F, then repF is a representation of A
such that repF(a) ̸= 0.
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The following theorem establishes a one to one correspondence between
representations of locally finite cylindric algebras and Henkin ultrafilters.
Csreg

ω denotes the class of regular set algebras; a a set algebra with top element
αU is such, if whenever f , g ∈ αU, f ↾ ∆x = g ↾ ∆x, and f ∈ X then g ∈ X.
This reflects the metalogical property that if two assignments agree on the
free variables occurring in a formula then both satisfy the formula or none
does.



Theorem (Gabor Sagi)
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If F ∈ H(A), then repF is a homomorphism from A onto an element of
Lfω∩Csreg

ω with baseω. Conversely, if h is a homomorphism fromA onto an
element of Lfω ∩ Csreg

ω with base ω, then there is a unique F ∈ H(A) such
that h = repF .
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The next lemma is due to Shelah, and will be used to show that in certain
cases uncountably many non-principal types can be omitted.

Lemma
Suppose that T is a theory, |T| = λ, λ regular, then there exist models Mi :
i < λ2, each of cardinality λ, such that if i(1) ̸= i(2) < χ, āi(l) ∈ Mi(l),
l = 1, 2,, tp(āl(1)) = tp(āl(2)), then there are pi ⊆ tp(āl(i)), |pi| < λ and
pi ⊢ tp(āl(i)) (tp(ā) denotes the complete type realized by the tuple ā).
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We shall use the algebraic counterpart of the following corollary obtained
by restricting Shelah’s theorem to the countable case:

Corollary
For any countable theory, there is a family of < ω2 countable models that
overlap only on principal types.
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Assume that κ < p. Let α be a countable infinite ordinal.

1. Let A ∈ Dcα be countable. Let (Γi : i ∈ κ) be a set of
non-principal types in A. Then there is a weak set algebra
B, that is,Bhas top element a weak space, and a homomorphism
f : A → B such that for all i ∈ κ,

⋂
x∈Xi

f (x) = ∅, and
f (a) ̸= 0. If A is simple, then p can be replaced by covK.

2. IfA ∈ Lfα, and (Γi : i ∈ κ) is a family of finitary non-principal
types then there is a topological set algebra B, that is, B
has top element a Cartesian square, and B ∈ Csreg

α ∩ Lfα
together with a homomorphism f : A → B such that⋂

x∈Xi
f (x) = ∅, and f (a) ̸= 0. If the family of given types

are ultrafilters then p can be replaced by 2ω, so that < 2ω

types can be omitted.
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For the first part, we have

(∀j < α)(∀x ∈ A)(cjx =
∑

i∈α∖∆x

sj
ix.) (1)

Now let V be the weak space ωω(Id) = {s ∈ ωω : |{i ∈ ω : si ̸= i}| < ω}.
For each τ ∈ V for each i ∈ κ, let

Xi,τ = {sτ x : x ∈ Xi}.

Here sτ is the unary operation as defined corresponding to τ . For each τ ∈
V, sτ is a complete Boolean endomorphism on A by It thus follows that

(∀τ ∈ V)(∀i ∈ κ)
∏

AXi,τ = 0 (2)
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Let S be the Stone space of the Boolean part of A, and for x ∈ A, let Nx
denote the clopen set consisting of all Boolean ultrafilters that contain x.
Then from (1) and (2) it follows that for x ∈ A, j < β, i < κ and τ ∈ V , the
sets

Gj,x = Ncjx \
⋃

i/∈∆x

Nsj
ix

and Hi,τ =
⋂
x∈Xi

Nsτ̄ x

are closed nowhere dense sets in S. Also each Hi,τ is closed and nowhere
dense. Let

G =
⋃
j∈β

⋃
x∈B

Gj,x and H =
⋃
i∈κ

⋃
τ∈V

Hi,τ.

By properties of p, H can be reduced to a countable collection of nowhere
dense sets.
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By the Baire Category theorem for compact Hausdorff spaces, we get that
H(A) = S ∼ H∪G is dense in S. Let F be an ultrafilter in Na ∩ X. By the very
choice of F, it follows that a ∈ F and we have the following.

(∀j < β)(∀x ∈ B)(cjx ∈ F

=⇒ (∃j /∈ ∆x)si
jx ∈ F.)

(3)

and

(∀i < κ)(∀τ ∈ V)(∃x ∈ Xi)sτ x /∈ F. (4)

Let V = ωωId) and let W be the quotient of V as defined above. That is
W = V/Ē where τ Ēσ if dτ(i),σ(i) ∈ F for all i ∈ ω.
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Define f by f(x) = {τ̄ ∈ W : sτ x ∈ F}, for x ∈ A.Then f is a homomorphism
such that f(a) ̸= 0 and it can be easily checked that

⋂
f(Xi) = ∅ for all

i ∈ κ, hence the desired conclusion. If A is simple, then by the properties
of covK, H(A) = S ∼ H ∪ G is non-empty. Let F ∈ H(A) and let a ∈ F.
The representation built using such F as above, call it f , has f(a) ̸= 0, By
simplicity of A, f is an injection, because kerf = {0}, since a /∈ kerf and by
simplicity, either kerf = {0} or kerf = A.
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2. One proceeds exactly like in the previous item, but using, as indicated
above, the fact that the operations sτ for any τ ∈ ωω which are definable
in locally finite algebras, via sτ x = sτ↾∆xx, for any x ∈ A. Furthermore,
sτ ↾ NrnA is a complete Boolean endomorphism, so that we guarantee that
infimums are preserved and the sets Hi,τ =

⋂
x∈Xi

Nsτ̄ x remain no-where
dense in the Stone topology.

Now for the second part. Let A ∈ Lfα, λ < 2ω and F = (Xi : i < λ) be a
family of maximal non-principal finitary types, so that for each i < λ, there
exists n ∈ ω such that Xi ⊆ NrnA, and

∏
Xi = 0; that is Xi is a Boolean

ultrafilter in NrnA.
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Then by Theorem 1, or rather its direct algebraic counterpart, there are
ω2 representations such that if X is an ultrafilter in NrnA (some n ∈ ω))
that is realized in two such representations, then X is necessarily principal.
That is there exist a family of countable locally finite set algebras, each with
countable base, call it (Bji : i < 2ω), and isomorphisms fi : A → Bji such
that if X is an ultrafilter in NrnA, for which there exists distinct k, l ∈ 2ω

with
⋂

fl(X) ̸= ∅ and
⋂

fj(X) ̸= ∅, then X is principal, so that from Shelah’s
lemma such representations overlap only on maximal principal types.
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Then there exists a family (Fi : i < 2ω) of Henkin ultrafilters such that fi =
hFi , and we can assume that hFi is an CAα isomorphism as follows. Denote
Fi by G. Assume, for contradiction, that there is no representation (model)
that omits F. Then for all i < 2ω , there exists F such that F is realized in
Bji . Let ψ : 2ω → ℘(F), be defined by ψ(i) = {F : F is realized in Bji}.
Then for all i < 2ω , ψ(i) ̸= ∅. Furthermore, for i ̸= k, ψ(i) ∩ ψ(k) = ∅, for
if F ∈ ψ(i) ∩ ψ(k) then it will be realized in Bji and Bjk , and so it will be
principal. This implies that |F| = 2ω which is impossible.
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Given an equivalence relation there are theorems that assert that either the
quotient space is ‘small’ or else it contains a copy of a specific ‘large’ set.
Two dichotomies showing this tendency are known.
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Given an equivalence relation there are theorems that assert that either the
quotient space is ‘small’ or else it contains a copy of a specific ‘large’ set.
Two dichotomies showing this tendency are known.

The Silver Vaught Dichotomy asserts that there are either
countably many equivalence classes or there is a perfect
set of pairwise inequivalent elements. For any continous
action by a Polish group G on a Polish space X, the orbit
equivalence relation is conjectured to satisfy the Silver Vaught
Dichotomy. This conjecture both implies and is motivated
by Vaught’s conjecture. In Vaught’s conjecture is the particular
case. when the group is the symmetric group of permutations
on X, and the set X, is the set of non isomorphic models of a
theory with domainω. The relation E is just the equivalence
relation of isomorphism. In our case X was a Gδ subset of
the Stone space of a countable cylindric algebra.
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Given an equivalence relation there are theorems that assert that either the
quotient space is ‘small’ or else it contains a copy of a specific ‘large’ set.
Two dichotomies showing this tendency are known.

Another Dichotomy, called the Glimm Effros dchotomy for
an equivalence relation E asserts that E contains a copy of
the Vitali equivalence relation E0 (equivalently there exists
a non atomic ergodic measure for E) or else there is a countable
Borel separating family for E.This dichotomy originates with
Glimm and Effros and is motivated by questions about operator
algebra. Glimm proved that the orbit space of a Polish group
G action satisfies the Glimm Effros Dichotomy if G is locally
compact. Effros proved it for any Polish group G, provded
that the equivalence relation is Fσ. There exists S∞ spaces
which violate the Glimm Effros dichotomy, but for the Silver
Vaught Dichotomy this is still an open question. In all cases
we consider, the Glimm Effros dichotomy implies the Silver
Vaught dichotomy.
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Let G ⊆ S∞ be a cli group, and let EG denote the corresponding orbit equivalence
relation. Then |H(A)/EG| ≤ ω or |H(A)/EG| = 2ω

Proof

It is known that the number of orbits of EG satisfies the so-called
Glimm-Effros Dichotomy. By known results in the literature on the
topological version of Vaught’s conjecture, we have H(A)/EG is either at
most countable or H(A)/EG contains continuum many non equivalent
elements (i.e non-isomorphic models).
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It is known that the number of orbits of E = ES∞ does not satisfy the Glimm
Effros Dichotomy. We note that cli groups cover all natural extensions of
abelian groups, like nilpotent and solvable groups. Now we give a topological
condition that implies Vaught’s conjecture. Let everything be as above with
G denoting a Polish subgroup of S∞. Give H(A)/EG the quotient topology
and let π : H(A) → H(A)/EG be the projection map. π of course depends
on G, we sometimes denote it by πG to emphasize the dependence.
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π is open.

Proof

To show that π is open it is enough to show for arbitrary a ∈ A that
π−1(π(Na)) is open. For,

π−1(π(Na)) = {F ∈ H(A) : (∃F′ ∈ Na) (F, F′) ∈ E}
= {F ∈ H(A) : (∃F′ ∈ Na)(∃ρ ∈ G) s+ρ F′ = F}
= {F ∈ H(A) : (∃F′ ∈ Na)(∃ρ ∈ G) F′ = s+ρ−1 F}

= {F ∈ H(A) : (∃ρ ∈ G)s+ρ−1 F ∈ Na}

= {F ∈ H(A) : (∃ρ ∈ G)a ∈ s+ρ−1 F}

= {F ∈ H(A) : (∃ρ ∈ G)s+ρ a ∈ F}

=
⋃
ρ∈G

Ns+ρ a
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If π is closed, then Vaught’s conjecture holds.

Proof

We have H(A) is Borel subset of A∗, the Stone space of A, and H(A)/EG
is a continuous image of H(A). Because π is open, H(A)/EG is second
countable. Now, since H(A) is metrizable, it is normal. Since π is closed,
open, continuous, and surjective, so H(A)/EG is also normal, hence regular.
Thus H(A)/EG can be embedded in Rω (like in the proof of Urysohn’s
metrization Theorem). If H(A)/EG is uncountable, then being analytic (the
continuous image under a map between two Polish spaces of a Borel set),
it has the power of the continuum.
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Unfortunately, π can’t be closed when G = S∞ (or G sufficiently large as we
shall see) and A is simple (this is the case when our theory T is complete).
Indeed, if it was closed, then as has just been shown, H(A)/E is Haussdorf.
A well known fact says that: when the quotient map is open, H(A)/E is
Hausdorf iff E is closed. We show that whenA is simple, then E is not closed.
For, assume towards a contradiction that E is closed, that is ∼ E is open.
Let (F, F′) /∈ E. Then for some a ∈ F, b ∈ F′, Na × Nb ∩ E = ∅, i.e., for all
τ ∈ S∞, a.s+τ b = 0. This last situation is of course impossible because one
can choose τ so that ∆a ∩∆s+τ b = ∅. Here we we used the fact that when
A is simple and ∆x ∩∆y = ∅, then x.y ̸= 0.
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We next give a new proof of Morley’s theorem; we also count the number of
models omitting a given family of types.

Theorem
Suppose T is a first order complete theory in a countable language with
equality.

1. (Morley) If T has more than ω1 countable models, then it
has 2ω countable models. The same statement holds for
theories not necessarily complete, in countable languages
with or without equality.

2. If (Γi : i < ω) be a family of non-isolated types, then the
number of non isomorphic countable models, omitting this
family, is either ω, ω1 or ω2



An algebraic proof to Morley’s theorem endowed with OTT 40/67

We next give a new proof of Morley’s theorem; we also count the number of
models omitting a given family of types.

Theorem
Suppose T is a first order complete theory in a countable language with
equality.

1. (Morley) If T has more than ω1 countable models, then it
has 2ω countable models. The same statement holds for
theories not necessarily complete, in countable languages
with or without equality.

2. If (Γi : i < ω) be a family of non-isolated types, then the
number of non isomorphic countable models, omitting this
family, is either ω, ω1 or ω2



Proof

An algebraic proof to Morley’s theorem endowed with OTT 41/67

Let T be a first order theory in a countable language with equality, and
let A = FmT . Then S∞ is a Polish group with respect to composition of
functions and the topology it inherits from the Baire space ωω. Consider
the map J : S∞×H(A) −→ H(A) defined by J(ρ, F) = s+ρ F for all ρ ∈ S∞,
F ∈ H(A). Then J is a well defined action of S∞ on H(A). Also J is a
continuous map from S∞ × H(A) (with the product topology) to H(A)
because for an arbitrary a ∈ A,

J−1(Na ∩H(A)) =
⋃

τ∈S∞

({µ−1 : µ ∈ S∞, µ|∆a

= τ |∆a} × [Ns+τ a ∩H(A)]).
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It follows that the the orbit equivalence relation is analytic. By Burgess’
Theorem if there are more than ω1 orbits, then there are 2ω orbits. But the
number of orbits here is exactly the number of non-isomorphic countably
infinite models of T. This completes the proof. For the part on omitting
types, set Homit = H(FmT) ∩

⋂
i∈ω,τ∈W

⋃
φ∈Γi

N−s+τ (φ/≡T) , where W =
{τ ∈ ωω : |i : τ(i) ̸= i| < ω}. Clearly, lHomit is Gδ , so it is Polish. For
the remaining part one uses locally finite QAωs instead of Lfωs.
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Let T be a countable theory. Then the number of non isomorphic models
is equal to the number of models omitting a given a set of< λmany types
are the same ⇐⇒ |H(FmT)| > |

⋃
i∈λ,τ∈W

⋂
φ∈Γi

Ns+τ (φ/≡T)|.

The next example shows that this may fail to happen: Consider non standard
models of arithmetic. N is an atomic model, which means that the neat
n-reduct of the locally finite cylindric algebra FmT based on T = Th(N) is
atomic for each n. For each n ∈ ω, let Γn be the set of co-atoms in the neat
n-reduct. These are non-principal types and a model M omits them ⇐⇒
it is atomic, hence it is isomorphic to N because atomic models are unique.
But Peano arithmetic is unstable, so it hasω2 many non-isomorphic countable
models (non-standard models of arithmetic).
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Another example exhibiting the same phenomena: Let T be the theory of
algebraically closed fields of characteristic zero. Then T is ω stable and
it has countably many non-isomorphic models; for each α ≤ ω, there is
a model of transcendence degree α over the rationals. Take the types as
above. In this case the all subalgebras of the n-neat reducts are atomic.
Then the the field of algebraic number is the only countable model omitting
this family of types. This is an atomic model. This theory has also another
countable ω-saturated model, which is that of transcendence degree ω.



Example 2
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There is a somewhat amusing Theorem of Vaught’s that says that a countable
theory cannot have exactly two models. We show that this is not the case
when we require that the constructed odels omit a given family of non-principal
types. Take the language L = {cn : n ∈ ω}. Then a model M of T is
determined by how many extra elements it has, i.e by |{b ∈ M : b ̸= cM

n }|.
So T is ω1 categorical and since T has only infinite models it is complete.
Also T has countably many non isomorphic models, Mα withαextra elements
for α ≤ ω. Consider the m type Γ =

∧
i ̸=j<m{vi ̸= vj} ∪ {v0 ̸= cn : n ∈

ω} ∪ {v1 ̸= cn : n ∈ ω} . . . {vm−1 ̸= cn : n ∈ ω}. Then Γ is non-principal
and it is omitted by exactly m models namely M0,M1, . . .Mm−1. This can be
generalized for complete strongly minimal theories which have countable
models of dimension α, α ≤ ω.
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We show that there is a theory having exactlyω1 models omitting continuum
many types. Take the first order countable theory in the language{<, c0, c1, . . . }
where< is a binary relation symbols and the c′i ’s (i ≤ ω) are constants. Let
T be the L theory which states that < is a linear order and that ci ̸= cj for
i ̸= j. Take Γ1 = {v1 ̸= ci : i ∈ ω} and for every injective f ∈ ωω, let
Γf = {cf(i) > cf(i+1) : i ∈ ω}. Consider the set of non-principal types
G = {Γ1, Γf : f ∈ ωω}. Then a model M omits G ⇐⇒ it is a countable well
order. The family G is uncountable. Making this family countable would
violate Vaught’s conjecture in Lω1,ω . Indeed let T be a countable theory
and {Γi : i < ω} be a family of non-principal types omitted by exactly ω1
models. Then the Lω1,ω sentence

∧
T ∧

∧
n∈ω(¬(∃v̄n)

∧
ϕ∈Γn

ϕ(v̄n)) violates
Vaught’s conjecture; for it has ω1 countable models.
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We define an equivalence relation on ultrafilters that turns out to be Borel.
This implies that it satisfies the Glimm-Effros dichotomy, and so has either
countably many or else continuum many equivalence classes. The equivalence
relation we introduce corresponds to a non-trivial equivalence relation between
models which is weaker than isomorphism and stronger than elementary
equivalence.

Definition (Notation)
LetF be an ultrafilter of a locally finite (cylindric or quasi-polyadic) algebra
A. For a ∈ A define

SatF (a) = {t|∆a : t ∈ ωω, s+t a ∈ F}.
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Throughout, A is countable. We define an equivalence relation E on the
space H(A)) that turns out to be Borel.

Definition
Let E be the following equivalence relation on H(A) :

E = {(F0,F1) : (∀a ∈ A)(|SatF0(a)| = |SatF1(a)|)}.
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We say that F0,F1 ∈ H(A) are distinguishable if (F0,F1) /∈ E . We also
say that two models of a theory T are distinguishable if their corresponding
ultrafilters inH(CA(T) = FmT) are distinguishable. That is, two models are
distinguishable if they disagree in the number of realizations they have for
some formula. Then E is Borel in the product space H(A)×H(A).
If X be a Polish space and E a Borel equivalence relation on X. We call E
smooth if there is a Borel map f from X to the Cantor space ω2 such that

xEy ⇔ f(x) = f(y).

Note that E is smooth iff E admits a countable Borel separating family, i.e.,
a family (An) of Borel sets such that

xEy ⇔ ∀n(x ∈ An ↔ y ∈ An).
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Clearly, if E is smooth then it is Borel (but the converse is not true). A standard
example of a non-smooth Borel equivalence relation is the following: On
2N, let E0 be defined by

xE0y ⇔ ∃n∀m ≥ n(x(m) = y(m)).

We say that the equivalence relation E, on a Polish space X, satisfies the
Glimm-Effros Dichotomy if either it is smooth or else it contains a copy of E0.
Clearly, for an equivalence relation E, E satisfies the Glimm-Effros Dichotomy
implies that E satisfies the Silver-Vaught Dichotomy, that is, E has either
countably many classes or else perfectly many classes (X has a perfect subset
of non-equivalent elements).
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Theorem (Harrington-Kechris-Louveau)

Let X be a Polish space and E a Borel equivalence relation on X. Then E
satisfies the Glimm-Effros Dichotomy.

It follows directly from this theorem, replacing X with H(A) that E satisfies
the Glimm-Effros dichotomy and so has either countably many equivalence
classes or else perfectly many.

Corollary

Let T be a first order theory in a countable language (with or without
equality). If T has an uncountable set of countable models that are pairwise
distinguishable, then actually it has such a set of size 2ℵ0 .
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A rich language is one for which outside any atomic formula there are infinitely
many variables–and the rest is like first order logic. Recall that rich languages
(corresponding to Dcα) enjoy an omitting types theorem; for < p many
non-principal types, and the types can contain infinitely many variables
(unlike first order logic). However, the models that omit a countable set of
non-principal types is only a weak model, and it can be proved that there
are cases, where it has to be a weak model.
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Let T be the theory of dense linear order without endpoints. Then T is complete.
Let Γ(x0, x1 . . .) be the set

{x1 < x0, x2 < x1, x3 < x2 . . .}.

(Here there is no bound on free variables.) A model M omits Γ if and only
if M is a well ordering. But T has no well ordered models, so no model of T
omits Γ. However T locally omits Γ because if ϕ(x0, . . . xn−1) is consistent
with T, then ϕ ∧ ¬xn+2 < xn+1 is consistent with T. Note that Γ can be
omitted in a weak model.
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But first a some definitions.

Definition

Let A and B be set algebras with bases U and W respectively. Then A and
B are base isomorphic if there exists a bijection f : U → W such that f̄ :
A → B defined by f̄(X) = {y ∈ αW : f−1 ◦ y ∈ x} is an isomorphism from
A to B

Definition

An algebra A is hereditary atomic, if each of its subalgebras is atomic.
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Finite Boolean algebras are hereditary atomic of course, but there are infinite
hereditary atomic Boolean algebras; any Boolean algebra generated by by
its atoms is hereditary atomic, for example the finite co-finite algebra on
any set. An algebra that is infinite and complete is not hereditary atomic,
whether atomic or not.
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Hereditary atomic algebras arise naturally as the Tarski-Lindenbaum algebras
of certain countable first order theories, that abound. If T is a countable
complete first order theory which has an an ω-saturated model, then for
each n ∈ ω, the Tarski-Lindenbuam Boolean algebra Fmn/T is hereditary
atomic. Here Fmn is the set of formulas using only n variables. For example
Th(Q, <) is such with Q the ω saturated model.
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A well known model-theoretic result is that T has an ω saturated model
iff T has countably many n types for all n. Algebraically n-types are just
ultrafilters in Fmn/T. And indeed, what characterizes hereditary atomic
algebras is that the base of their Stone space, that is the set of all ultrafilters,
is at most countable.

Lemma
Let B be a countable Boolean algebra. If B is hereditary atomic then the
number of ultrafilters is at most countable; of course they are finite if B is
finite. If B is not hereditary atomic the it has 2ω ultrafilters.
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Our next theorem is the natural extension of Vaught’s theorem to variable
rich languages. However, we address only languages with finitely many
relation symbols. (Our algebras are finitely generated, and being simple,
this is equivalent to that it is generated by a single element.)

Theorem
Let A ∈ Dcα be countable simple and finitely generated. Then the number
of non-base isomorphic representations of A is 2ω .
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Let V = αα(Id) and let A be as in the hypothesis. Then A cannot be atomic,
least hereditary atomic. By 10, it has 2ω ultrafilters.
For an ultrafilter F, let hF(a) = {τ ∈ V : sτa ∈ F}, a ∈ A. Then hF ̸= 0,
indeed Id ∈ hF(a) for any a ∈ F, hence hF is an injection, by simplicity of
A. Now hF : A → ℘(V); all the hF ’s have the same target algebra. We claim
that hF(A) is base isomorphic to hG(A) iff there exists a finite bijectionσ ∈ V
such that sσF = G. We set out to confirm our claim. Letσ : α→ αbe a finite
bijection such that sσF = G. Define Ψ : hF(A) → ℘(V) by Ψ(X) = {τ ∈ V :
σ−1 ◦ τ ∈ X}. Then, by definition, Ψ is a base isomorphism. We show that
Ψ(hF(a)) = hG(a) for all a ∈ A. Let a ∈ A. Let X = {τ ∈ V : sτa ∈ F}.



Proof (continue)
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Let Z = Ψ(X). Then

Z = {τ ∈ V : σ−1 ◦ τ ∈ X}
= {τ ∈ V : sσ−1◦τ (a) ∈ F}
= {τ ∈ V : sτa ∈ sσF}
= {τ ∈ V : sτa ∈ G}.
= hG(a)

Conversely, assume that σ̄ establishes a base isomorphism between hF(A)
and hG(A). Then σ̄ ◦ hF = hG. We show that if a ∈ F, then sσa ∈ G. Let
a ∈ F, and let X = hF(a). Then, we have

¯σ ◦ hF(a) = σ(X)
= {y ∈ V : σ−1 ◦ y ∈ hF(X)}
= {y ∈ V : sσ−1◦ya ∈ F}
= hG(a)



Proof (continue)
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Now we have hG(a) = {y ∈ V : sya ∈ G}. But a ∈ F. Hence σ−1 ∈ hG(a) so
sσ−1 a ∈ G, and hence a ∈ sσG.

Define the equivalence relation∼ on the set of ultrafilters by F ∼ G, if there
exists a finite permutationσ such that F = sσG. Then any equivalence class
is countable, and so we have ω2 many classes, which correspond to the non
base isomorphic representations of A.
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Theorem

Let T be a countable theory in a rich language, with only finitely many
relation symbols, and Γ = {Γi : i ∈ p} be non isolated types. Then T has
2ω weak models that omit Γ. If T is complete we can replace p by covK.
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1. VC can be viewed topologically as counting the number of
orbits of a (Polish) group action on a Polish space.

2. In approaching VC you can change the group (in the
action of a group) on a topological space, counting the
orbits.

Or you can change the notion of isomorphism instead of
counting non-isomorphic models; we count instead the
number of ’distinct’ models in some sense like non
elementary equivalent or something in between non
isomorphic and non elementary equivalent.

We also study the case when the group G is a Polish group
where the topology is induced by a complete left
invariant metric.
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Counting weak modes (defined above) and distinguishable models (defined
above) satisfy VC

Counting orbits of a Polish group that admits a left invariant complete
metric this covers Abelian (initiated by Sami from CU) and solvable and
more!
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Thank You!!
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