Happy Birthday!!! - LGS in Amsterdam in 1995

Non-finitely axiomatisable canonical varieties of 'non-relativised' algebras of relations with infinite canonical axiomatisations

Agi Kurucz

King's College London

Joint work with Christopher Hampson, Stanislav Kikot, and Sérgio Marcelino

based on the paper:

C. Hampson, S. Kikot, A. Kurucz and S. Marcelino:

Non-finitely axiomatisable modal product logics with infinite canonical axiomatisations, **Annals of Pure and Applied Logic**, vol. 171(5):102786 (2020).

Varieties of BAOs — normal multimodal logics

Jónsson, Tarski, Kripke, ...

BAOs Boolean algebras with additional operators that are

- normal $f(\dots, 0, \dots) = 0$ • additive $f(\dots, x + y, \dots) = f(\dots, x, \dots) + f(\dots, y, \dots)$
- normal propositional multimodal logics
 - K-axioms and Necessitation rule for each \square modality
 - possible world (relational aka Kripke) semantics

Canonicity

- canonical variety of BAOs closed under canonical extensions
 canonical modal logic valid in its canonical structures
- canonical equation the variety it axiomatises is canonical
 canonical formula the modal logic it axiomatises is canonical

• Kracht 1999

canonicity of an equation/formula is an undecidable `semantical' property

- but: there are well-known syntactical descriptions resulting in canonical equations/formulas
 - Sahlqvist equations/formulas
 - inductive equations/formulas á la Goranko-Vakarelov 2006
 - ...

Barely canonical logics/varieties

- Canonicity of a logic/variety can be shown <u>without</u> finding explicit axioms:
 - Fine 1975 elementarily generated logics are canonical
 - Goldblatt 1989 logics of ultraproduct-closed classes are canonical
- Hodkinson-Venema 2005
 There are barely canonical logics/varieties:
 - they are canonical, but
 - every axiomatisation must contain infinitely many non-canonical axioms

FOR EXAMPLE: Goldblatt–Hodkinson 2007, Bulian–Hodkinson 2013, Kikot 2015 Hughes logic, McKinsey–Lemmon logic varieties of `non-relativised' algebras of relations: RRA, RCA_n, RDf_n for $n \geq 3$

Dichotomy?

but, there are many well-known finitely Sahlqvist axiomatisable logics/varieties

is there anything "in between"?

- non-finitely axiomatisable, but
- axiomatisable by (infinitely many) canonical axioms ?

Resek–Thompson axiomatisable by an infinite set of Sahlqvist equations

is there any variety of 'non-relativised' algebras of relations "in between"?

Two-variable first-order logic with 'elsewhere' quantifiers

for some binary predicate symbols P

$$\begin{split} \mathfrak{M} &\models \exists^{\neq} x \, \phi[a/x, b/y] & \text{ iff } \quad \exists a' \neq a \quad \mathfrak{M} \models \phi[a'/x, b/y] \\ \mathfrak{M} &\models \exists^{\neq} y \, \phi[a/x, b/y] & \text{ iff } \quad \exists b' \neq b \quad \mathfrak{M} \models \phi[a/x, b'/y] \end{split}$$

 $\exists x \, \phi \leftrightarrow (\phi \lor \exists^{\neq} x \, \phi)$

$$\exists y\,\phi \leftrightarrow (\phi \lor \exists^{\neq} y\,\phi)$$

The satisfiability problem is

- NEXPTIME-complete Pacholski–Szwast–Tendera 2000
- shorter proof with connections to integer programming Pratt-Hartmann 2010

'restricted' (equality and substitution-free) fragment:

Algebraisation: 'strict' diagonal-free cylindric set algebras

full rectangular set algebras: $\mathfrak{A} = (\mathcal{B}(U \times V), C_0^{\neq}, C_1^{\neq})$ for every $X \subset U \times V$,

$$\begin{split} C_0^{\neq}(X) &= \{(u,v) : \exists u'(u' \neq u \text{ and } (u',v) \in X) \} \\ C_1^{\neq}(X) &= \{(u,v) : \exists v'(v' \neq v \text{ and } (u,v') \in X) \} \end{split}$$

 $C_i(X) = X \cup C_i^{\neq}(X)$

full square set algebras:

$$\mathfrak{A} = ig(\mathcal{B}(U imes U), C_0^{
eq}, C_1^{
eq} ig)$$

• $sRdf_2 = SP{full rectangular set algebras}$ and

 $sRdf_2^{sq} = SP{full square set algebras}$

are (different) discriminator and canonical varieties

• $Eq(sRdf_2)$ and $Eq(sRdf_2^{sq})$ are decidable \rightarrow r.e.

 \rightarrow let's try to axiomatise them

Our results: $sRdf_2$ and $sRdf_2^{sq}$ are canonical varieties "in between"

- Eq(sRdf₂) \sim Logic_of(*Rectangles*) is not finitely axiomatisable
- + but it has an infinite axiomatisation by Sahlqvist equations/formulas
- $\ \mathsf{Eq}(\mathsf{sRdf}_2^{\mathsf{sq}}) \ \sim \ \mathsf{Logic}_{-}\mathsf{of}(\mathsf{Squares})$

is not finitely axiomatisable over

 $Eq(sRdf_2) \sim Logic_of(\textit{Rectangles})$

+ but it can be **axiomatised by** adding infinitely many **Sahlqvist** equations/formulas

Contrast: `restricted' two-variable fragment (without `elsewhere' quantifiers)

 Eq(Rdf₂) = Eq{rectangular set algebras} = Eq{square set algebras} has finite Sahlqvist axiomatisation Df₂:

two commuting complemented closure operators

• Eq(Rdf₂) is finitely axiomatisable over both Eq(sRdf₂) and Eq(sRdf₂^{sq}) just add $x \le c_i(x)$

Axiomatisation basics: 'grids' (of bi-clusters)

- rectangle: $U \times V$ with two `coordinate-wise \neq ' relations: $(u_1, v) \neq_0 (u_2, v)$ iff $u_1 \neq u_2$ $(u, v_1) \neq_1 (u, v_2)$ iff $v_1 \neq v_2$
- Simple equationally (Sahlqvist) expressible properties of rectangles:

two commuting pseudo-equivalence relations

Axiomatisation basics: 'grids' (of bi-clusters)

- rectangle: $U \times V$ with two `coordinate-wise \neq ' relations: $(u_1, v) \neq_0 (u_2, v)$ iff $u_1 \neq u_2$ $(u, v_1) \neq_1 (u, v_2)$ iff $v_1 \neq v_2$
- Simple equationally (Sahlqvist) expressible properties of rectangles:

two commuting pseudo-equivalence relations

grid: `rooted' sDf₂ atom structure

Axiomatisation basics: 'grids' (of bi-clusters)

- rectangle: $U \times V$ with two `coordinate-wise \neq ' relations: $(u_1, v) \neq_0 (u_2, v)$ iff $u_1 \neq u_2$ $(u, v_1) \neq_1 (u, v_2)$ iff $v_1 \neq v_2$
- Simple equationally (Sahlqvist) expressible properties of rectangles:

two commuting pseudo-equivalence relations

$$egin{aligned} \mathsf{sDf}_2: & x \leq -c_i(-c_ix) \ & c_ic_ix \leq x+c_ix \ & c_0c_1x = c_1c_0x \end{aligned}$$

- grid: `rooted' sDf₂ atom structure
- for every finite grid \mathfrak{F} ,

 $Cm\mathfrak{F} \in \mathbf{sRdf}_2$ iff \mathfrak{F} is a p-morphic image of a rectangle $Cm\mathfrak{F} \in \mathbf{sRdf}_2^{sq}$ iff \mathfrak{F} is a p-morphic image of a square

- \bigcirc : R_0 -reflexive, R_1 -irreflexive
- : R_0 -irreflexive, R_1 -reflexive
- : both-irreflexive
- ∞: both-reflexive

Non-finite axiomatisability

For every $k < \omega$ there are two finite grids:

- \mathfrak{F}_k is **not** a p-morphic image of a rectangle
- \mathfrak{G}_k is a p-morphic image of a square
- If $2^{m+1} \leq k$ then with m variables we can't tell \mathfrak{F}_k and \mathfrak{G}_k apart

Explicit axioms via representation game

Hirsch-Hodkinson 1997a

- step-by-step build representations for countable algebras in RA, CA_n , Df_n
- can be described as a game $|\mathcal{G}_{\omega}(\mathfrak{A})|$ between \forall and \exists :

 \mathfrak{A} is representable

" \exists has a winning strategy" \iff (infinitely many) **universal formulas**

discriminator varieties \rightarrow equational axiomatisations

 \exists has a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{A})$

are all these axioms canonical? NO, when n > 3

iff

same technique can be used to obtain explicit (infinite) axiomatisations for $Eq(sRdf_2)$ and $Eq(sRdf_2^{sq})$

are these axioms canonical??

Canonical axioms via complete representation game?

Hirsch-Hodkinson 1997b

- step-by-step build complete representations for countable atom-structures (for RA, CA_n)
- same technique can be used for **sDf**₂:

can be described as a game $\mathcal{G}_{\omega}(\mathfrak{F})$ between \forall and \exists , step-by-step building homomorphisms from larger and larger rectangles to \mathfrak{F}

 \mathfrak{F} is a p-morphic image of a rectangle iff \exists has a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{F})$

can we describe this with canonical equations/formulas??

Axioms for elementarily generated logics via hybrid logic

Hodkinson 2006

C

 $\Pi(\mathcal{C})$

FO pseudo-equational theory of $\, {\cal C} \,$

algorithmic

$$\Phi_{\mathcal{C}} = \{\iota_{\theta} : \theta \in \Pi(\mathcal{C})\}$$
 — set of **pure hybrid** formulas

algorithmic

$$\Sigma_{\Phi_{\mathcal{C}}} = \bigcup_{\iota \in \Phi_{\mathcal{C}}} \Sigma_{\iota} - \text{set of `modal approximants'}$$

Logic_of (C) = modal logic axiomatised by $\Sigma_{\Phi_{\mathcal{C}}}$

not necessarily canonical axioms

So how do we get a canonical axiomatisation?

'Finitary Sahlqvist reason' $\varphi_{\mathfrak{F}}$ from a (possibly infinite) \mathfrak{F} ?

There can be two kinds of reasons for a grid $\left| \mathfrak{F} \right|$ being bad:

- either 😽 contains a finite bad bi-cluster (that itself is not a p-morphic image of a rectangle)
- or contains no such \sim linear constraint system $\Gamma^{\mathfrak{F}}$:

- we consider the columns and rows in $|\mathfrak{F}|$ as variables
- constraints come from the fact that the sizes of the rectangular p-morphic preimages of bi-clusters must `match'

but contains a finite 'contradictory chain' of constraints

Agi Kurucz — Alfréd Rényi Institute of Mathematics, Budapest, September 2022

Sahlqvist axiomatisation for $sRdf_2^{sq}$ is much more complex

Some mentioned papers

- D. Resek and R. Thompson, **Characterizing relativized cylindric algebras**, in: *Algebraic Logic* (eds.: H.Andréka, J.D.Monk, I.Németi), pp.245–292, North-Holland, 1991.
- R. Hirsch and I. Hodkinson, **Step by step building representations in algebraic logic**, *Journal of Symbolic Logic*, 62:225–279, 1997.
- R. Hirsch and I. Hodkinson, **Complete representations in algebraic logic**, *Journal of Symbolic Logic*, 62:816–847, 1997.
- V. Goranko and D. Vakarelov, **Sahlqvist formulas in hybrid polyadic modal logics**, *Journal of Logic and Computation*, 11:737–754, 2001.
- I. Hodkinson and Y. Venema, **Canonical varieties with no canonical axiomatisation**, *Transactions of the American Mathematical Society*, 357:4579–4605, 2005.
- I. Hodkinson **Hybrid formulas and elementarily generated modal logics**, *Notre Dame Journal of Formal Logic*, 47:443–478, 2006.
- V. Goranko and D. Vakarelov, **Elementary canonical formulae: extending Sahlqvist's theorem,** *Annals of Pure and Applied Logic*, 141:180–217, 2006.
- R. Goldblatt and I. Hodkinson, **The McKinsey-Lemmon logic is barely canonical**, *The Australasian Journal of Logic*, 5:1–19, 2007.
- J. Bulian and I. Hodkinson, **Bare canonicity of representable cylindric and polyadic algebras**, *Annals of Pure and Applied Logic*, 164:884–906, 2013.

• S. Kikot, **A dichotomy for some elementarily generated modal logics**, *Studia Logica*, 103:1063–1093, 2015.