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Concept algebras ...



Propositional Structure

M

A concept is
definable subset of the universe M.

∧, ∨, ¬



Propositional Structure

M

A concept is
definable subset of the universe M.

∧, ∨, ¬



Propositional Structure

M

A concept is
definable subset of the universe M.

∧, ∨, ¬



Propositional Structure

M

A concept is
definable subset of the universe M.

∧, ∨, ¬



Propositional Structure

M

A concept is
definable subset of the universe M.

∧, ∨, ¬



Propositional Structure

M

A concept is
definable subset of the universe M.

∧, ∨, ¬



Boolean Algebras

Goerge Boole (1815 - 1864)

Boolean set algebras



Boolean Algebras

Goerge Boole (1815 - 1864) Boolean set algebras



Variety of BA’s

2 def
=

〈
{0, 1},∧,∨,¬, 0, 1

〉

p q p ∧ q

0 0 0
0 1 0
1 0 0
1 1 1

p q p ∨ q

0 0 0
0 1 1
1 0 1
1 1 1

p ¬p
0 1
1 0
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Space of Concepts

• We assume a fixed enumeration v0, v1, . . . of the individual variables.

• Define the meaning of

ϕ = ϕ(vi1 , . . . , vin)

in M as follows:

[ϕ]M
def
=

{
(a0, a1, . . .) ∈ Mω : ϕ(ai1 , . . . , ain) is true in M

}

⊆ Mω

0
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Geometry of Concepts

• [ϕ ∨ ψ]M = [ϕ]M ∪ [ψ]M

• [¬ϕ]M = Mω ∼ [ϕ]M
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ā ∈ Mω :

(
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)
ā ≡i ā
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′}

def
= Ci [ϕ]M

• [vi = vj ]
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∃ā′ ∈ [ϕ]M

)
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Example:

RS = 〈R4, colt〉 CS+ = 〈R4, col∞, colλ〉

Conjecture (H. Andréka)

Cs(CS+) =
〈
Cs(RS), b

〉
for any concept b in Cs(CS+) not in Cs(RS).



“The corresponding facit of the theory of cylindric algebras is to describe the
cylindric set algebras Cs(M) for important models M. This amounts to looking
at complete theories only, which is customary in model theory. It is somewhat
surprising that this aspect of the theory of cylindric algebras has been almost
entirely neglected. A complete description of Cs(M) is known only in the case in
which M has only one-place relations. There are many other simple structures
where the description of Cs(M) should not be difficult; for example, for M the
rationals under their natural ordering."

[
Monk, J.D.: An introduction to cylindric set algebras. Logic Journal of the IGPL 8, 451–496 (2000)

]
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Examples of concept algebras ...
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ϕ : v2 7→ b is an isomorphism
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Non-homogeneous structures

• Finite Langauge!
• Local Failure of Homogenization!

R••

M −→M+
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n+1
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ω )

M+
ω is homogeneous!

M not homogeneous!
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Non-homogeneous structures

• Finite Langauge!
• Local Failure of Homogenization!

R••

M −→M+
1 −→M+

2 · · · −→M+
n+1

Cs(M) = Cs(M+
ω )

M+
ω is homogeneous!

n + 1 n + 1

n + 1 n + 1

M+
n not homogeneous!



Thank you!
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