

Celebrating István Németi's 80th Birthday

A conceptual-based attribute to connections between theories

Mohamed Khaled

Concept algebras ...

		
•		
•		

		\diamond
•		
•		

A concept is

definable subset of the universe M.

A concept is

definable subset of the universe M.

 \land , \lor , \neg

Boolean Algebras

Goerge Boole (1815 - 1864)

Boolean Algebras

Goerge Boole (1815 - 1864)

Boolean set algebras

Variety of BA's

$\mathbf{2} \stackrel{\text{\tiny def}}{=} \big\langle \{0,1\}, \wedge, \vee, \neg, 0, 1 \big\rangle$

р	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

р	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

p	$\neg p$
0	1
1	0

M; y M; x

A concept is a definable relation on *M* of finite rank.

A concept is a definable relation on *M* of finite rank.

 M, M^2, M^3, M^4, \ldots

• We assume a fixed enumeration v_0, v_1, \ldots of the individual variables.

• We assume a fixed enumeration v_0, v_1, \ldots of the individual variables.

$$\varphi = \varphi(\mathbf{v}_{i_1},\ldots,\mathbf{v}_{i_n})$$

- We assume a fixed enumeration v_0, v_1, \ldots of the individual variables.
- Define the meaning of $\varphi = \varphi(v_{i_1}, \ldots, v_{i_n})$ in \mathfrak{M} as follows:

- We assume a fixed enumeration v_0, v_1, \ldots of the individual variables.
- Define the meaning of $\varphi = \varphi(v_{i_1}, \ldots, v_{i_n})$ in \mathfrak{M} as follows:

$$[\varphi]^{\mathfrak{M}} \stackrel{\text{\tiny def}}{=} \big\{ (a_0, a_1, \ldots) \in M^{\omega} : \varphi(a_{i_1}, \ldots, a_{i_n}) \text{ is true in } \mathfrak{M} \big\}$$

- We assume a fixed enumeration v_0, v_1, \ldots of the individual variables.
- Define the meaning of $\varphi = \varphi(v_{i_1}, \ldots, v_{i_n})$ in \mathfrak{M} as follows:

$$[\varphi]^{\mathfrak{M}} \stackrel{\text{\tiny def}}{=} \big\{ (a_0, a_1, \ldots) \in M^{\omega} : \varphi(a_{i_1}, \ldots, a_{i_n}) \text{ is true in } \mathfrak{M} \big\} \subseteq M^{\omega}$$

- We assume a fixed enumeration v_0, v_1, \ldots of the individual variables.
- Define the meaning of $\varphi = \varphi(v_{i_1}, \ldots, v_{i_n})$ in \mathfrak{M} as follows:

$$[\varphi]^{\mathfrak{M}} \stackrel{\text{\tiny def}}{=} \big\{ (a_0, a_1, \ldots) \in M^{\omega} : \varphi(a_{i_1}, \ldots, a_{i_n}) \text{ is true in } \mathfrak{M} \big\} \subseteq M^{\omega}$$

• $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \varphi\right]^{\mathfrak{M}} = \left\{ \bar{a} \in M^{\omega} : \left(\exists \bar{a}' \in [\varphi]^{\mathfrak{M}} \right) \ \bar{a} \equiv_i \bar{a}' \right\}$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \ \varphi\right]^{\mathfrak{M}} = \left\{ \overline{\mathbf{a}} \in M^{\omega} : \left(\exists \overline{\mathbf{a}}' \in [\varphi]^{\mathfrak{M}}\right) \ \overline{\mathbf{a}} \equiv_i \overline{\mathbf{a}}' \right\}$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \varphi\right]^{\mathfrak{M}} = \left\{ \bar{a} \in M^{\omega} : \left(\exists \bar{a}' \in [\varphi]^{\mathfrak{M}} \right) \ \bar{a} \equiv_i \bar{a}' \right\}$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \varphi\right]^{\mathfrak{M}} = \left\{ \bar{a} \in M^{\omega} : \left(\exists \bar{a}' \in [\varphi]^{\mathfrak{M}}\right) \ \bar{a} \equiv_i \bar{a}' \right\} \stackrel{\text{def}}{=} C_i[\varphi]^{\mathfrak{M}}$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \; \varphi\right]^{\mathfrak{M}} = \left\{ \bar{a} \in M^{\omega} : \left(\exists \bar{a}' \in [\varphi]^{\mathfrak{M}}\right) \; \; \bar{a} \equiv_i \bar{a}' \right\} \stackrel{\text{def}}{=} C_i[\varphi]^{\mathfrak{M}}$

•
$$[v_i = v_j]^{\mathfrak{M}} = \{ \overline{a} \in M^{\omega} : a_i = a_j \}$$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \; \varphi\right]^{\mathfrak{M}} = \left\{ \bar{a} \in M^{\omega} : \left(\exists \bar{a}' \in [\varphi]^{\mathfrak{M}}\right) \; \; \bar{a} \equiv_i \bar{a}' \right\} \stackrel{\text{def}}{=} C_i[\varphi]^{\mathfrak{M}}$

•
$$[v_i = v_j]^{\mathfrak{M}} = \{ \overline{a} \in M^{\omega} : a_i = a_j \}$$

• $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$

•
$$[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$$

• $\left[\exists v_i \ \varphi\right]^{\mathfrak{M}} = \left\{ \overline{a} \in M^{\omega} : \left(\exists \overline{a}' \in [\varphi]^{\mathfrak{M}}\right) \ \overline{a} \equiv_i \overline{a}' \right\} \stackrel{\text{def}}{=} C_i[\varphi]^{\mathfrak{M}}$

•
$$[v_i = v_j]^{\mathfrak{M}} = \{ \overline{a} \in M^{\omega} : a_i = a_j \} \stackrel{\text{def}}{=} D_{ij}$$

Definition

The concept algebra of ${\mathfrak M}$ is:

 $\mathfrak{Cs}(\mathfrak{M}) \stackrel{\text{\tiny def}}{=} \langle \mathit{Cs}(\mathfrak{M}), \cup, \sim, \mathit{C}_i, \mathit{D}_{ij} \rangle_{i,j < \omega}.$

Definition

The concept algebra of ${\mathfrak M}$ is:

 $\mathfrak{Cs}(\mathfrak{M}) \stackrel{\text{\tiny def}}{=} \langle Cs(\mathfrak{M}), \cup, \sim, C_i, D_{ij} \rangle_{i,j < \omega}.$

Definition

The concept algebra of ${\mathfrak M}$ is:

$$\mathfrak{Cs}(\mathfrak{M}) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \langle \mathit{Cs}(\mathfrak{M}), \cup, \sim, \mathit{C}_i, \mathit{D}_{ij} \rangle_{i,j < \omega}$$

Definition

The concept algebra of ${\mathfrak M}$ is:

$$\mathfrak{Cs}(\mathfrak{M}) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \langle \mathit{Cs}(\mathfrak{M}), \cup, \sim, \mathit{C}_i, \mathit{D}_{ij} \rangle_{i,j < \omega}$$

Connections between theories ...

 $\mathfrak{Cs}(\mathfrak{M}) = \mathfrak{Cs}(\mathfrak{N})$


```
\mathfrak{Cs}(\mathfrak{N}) \subseteq \mathfrak{Cs}(\mathfrak{M})
```



```
\mathfrak{Cs}(\mathfrak{N}) \subseteq \mathfrak{Cs}(\mathfrak{M})
```


Homomorphisms

A translation from the language of $\mathfrak M$ to the language of $\mathfrak N$

Homomorphisms

 $\mathfrak{Cs}(\mathfrak{M})$

 $\mathfrak{Cs}(\mathfrak{N})$

 $\mathfrak{Cs}(\mathfrak{M}) / \theta \cong \mathfrak{Cs}(\mathfrak{N})$

$$\mathfrak{Cs}(\mathfrak{N}) \hspace{.1in} \hookrightarrow \hspace{.1in} \mathfrak{Cs}(\mathfrak{M})$$

 $\mathfrak{Cs}(\mathfrak{M}) / \theta \cong$ $\mathfrak{Cs}(\mathfrak{N})$

 \implies

Mutual Definability

Mutual Definability

 \Leftarrow

 \implies

Mutual Definability

H. Andréka, J. Madarász and I. Németi (2005)

 \implies

Mutual Definability

H. Andréka, J. Madarász and I. Németi (2005)

$$\mathfrak{Cs}(\mathfrak{M}) = \langle X \rangle$$

$$\mathfrak{Cs}(\mathfrak{M}) = \langle X \rangle$$

Changing the language of $\mathfrak M$

$$(\mathbf{x}) = \langle X \rangle$$

Changing the language of $\mathfrak M$

$$\mathfrak{Cs}(\mathfrak{M}) = \langle X$$

Changing the language of $\mathfrak M$

Adding concepts to \mathfrak{N} to get \mathfrak{M}

$$\mathcal{RS} = \langle \mathbb{R}^4, \mathsf{col}^t \rangle$$

$$\mathcal{CS}^+ = \langle \mathbb{R}^4, \mathsf{col}^\infty, \mathsf{col}^\lambda \rangle$$

Conjecture (H. Andréka)

 $\mathfrak{Cs}(\mathcal{CS}^+) = ig\langle \mathfrak{Cs}(\mathcal{RS}), b ig
angle$

for any concept b in \mathfrak{CS}^+) not in $\mathfrak{Cs}(\mathcal{RS})$.

Examples of concept algebras ...

$\mathfrak{Nr}_{n}\mathfrak{Cs}(\mathfrak{M})$

 $\mathfrak{Nr}_{n}\mathfrak{Cs}(\mathfrak{M})$

 $\mathfrak{Nr}_1\mathfrak{Cs}(\mathfrak{M})\subseteq\cdots\subseteq\mathfrak{Nr}_n\mathfrak{Cs}(\mathfrak{M})\subseteq\cdots$

The neat reduct $\mathfrak{Mr}_{n}\mathfrak{Cs}(\mathfrak{M})$ is atomic (in fact, finite)!

The neat reduct $\mathfrak{Mr}_{n}\mathfrak{Cs}(\mathfrak{M})$ is atomic (in fact, finite)!

An atom:

 $\epsilon(\sim) \land \varphi$

The neat reduct $\mathfrak{Mr}_{n}\mathfrak{Cs}(\mathfrak{M})$ is atomic (in fact, finite)!

An atom:

 $\epsilon(\sim) \land \varphi$

The neat reduct $\mathfrak{Nr}_n\mathfrak{Cs}(\mathfrak{M})$ is atomic (in fact, finite)! An atom: $v_1 \quad v_0$ $\epsilon(\sim) \land \varphi \qquad v_2 \quad v_3$

The neat reduct $\mathfrak{Mr}_{n}\mathfrak{Cs}(\mathfrak{M})$ is atomic (in fact, finite)!

An atom:

 $\epsilon(\sim) \land \varphi$

Equivalence relation \sim

The neat reduct $\mathfrak{Mr}_{n}\mathfrak{Cs}(\mathfrak{M})$ is atomic (in fact, finite)!

An atom:

 $\epsilon(\sim) \land \varphi$

Equivalence relation \sim

The neat reduct $\mathfrak{Mr}_{n}\mathfrak{Cs}(\mathfrak{M})$ is atomic (in fact, finite)!

An atom:

 $\epsilon(\sim) \land \varphi$

Equivalence relation \sim

The neat reduct $\mathfrak{Mr}_{n}\mathfrak{Cs}(\mathfrak{M})$ is atomic (in fact, finite)!

An atom:

 $\epsilon(\sim) \land \varphi$

Equivalence relation \sim

Homogeneous structure ${\mathfrak M}$

The neat reduct $\mathfrak{Nr}_{n}\mathfrak{Cs}(\mathfrak{M})$ is atomic (in fact, finite)!

An atom:

 $\epsilon(\sim) \land \varphi$

Equivalence relation \sim

Homogeneous structure ${\mathfrak M}$

The neat reduct $\mathfrak{Nr}_{n}\mathfrak{Cs}(\mathfrak{M})$ is atomic (in fact, finite)!

An atom:

 $\epsilon(\sim) \land \varphi$

Equivalence relation \sim

 $\mathbb{Q}=\langle\mathbb{Q},<\rangle$ is homogeneous

 $\mathbb{Q}=\langle\mathbb{Q},<\rangle$ is homogeneous

The 3-dimensional atoms of $\mathfrak{Cs}\mathbb{Q}$ up to symmetries of indices

• Finite Langauge!

- Finite Langauge!
- Local Failure of Homogenization!

- Finite Langauge!
- Local Failure of Homogenization!

R...

- Finite Langauge!
- Local Failure of Homogenization!

 $R_{\bullet\bullet}$

 $\mathfrak{M} \longrightarrow \mathfrak{M}_1^+$

- Finite Langauge!
- Local Failure of Homogenization!

 $R_{\bullet\bullet}$

 $\mathfrak{M}\longrightarrow \mathfrak{M}_1^+$

- Finite Langauge!
- Local Failure of Homogenization!

 $R_{\bullet\bullet}$

 $\mathfrak{M}\longrightarrow \mathfrak{M}_1^+$

- Finite Langauge!
- Local Failure of Homogenization!

R...

$$\mathfrak{M}\longrightarrow \mathfrak{M}_1^+\longrightarrow \mathfrak{M}_2^+$$

- Finite Langauge!
- Local Failure of Homogenization!

R...

$$\mathfrak{M}\longrightarrow \mathfrak{M}_1^+\longrightarrow \mathfrak{M}_2^+$$

- Finite Langauge!
- Local Failure of Homogenization!

R...

$$\mathfrak{M}\longrightarrow \mathfrak{M}_1^+\longrightarrow \mathfrak{M}_2^+$$

- Finite Langauge!
- Local Failure of Homogenization!

R...

$$\mathfrak{M}\longrightarrow \mathfrak{M}_1^+\longrightarrow \mathfrak{M}_2^+\cdots \longrightarrow \mathfrak{M}_{n+1}^+$$

- Finite Langauge!
- Local Failure of Homogenization!

R...

 $\mathfrak{M} \longrightarrow \mathfrak{M}_1^+ \longrightarrow \mathfrak{M}_2^+ \cdots \longrightarrow \mathfrak{M}_{n+1}^+$

 $\mathfrak{Cs}(\mathfrak{M}) = \mathfrak{Cs}(\mathfrak{M}^+_\omega)$

- Finite Langauge!
- Local Failure of Homogenization!

R...

 $\mathfrak{M} \longrightarrow \mathfrak{M}_1^+ \longrightarrow \mathfrak{M}_2^+ \cdots \longrightarrow \mathfrak{M}_{n+1}^+$

 $\mathfrak{Cs}(\mathfrak{M})=\mathfrak{Cs}(\mathfrak{M}^+_\omega)$

 \mathfrak{M}^+_ω is homogeneous!

Thank you!