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Unless otherwise indicated n is fixed to be a

finite ordinal > 2. Let L be an extension or

reduct or variant of first order logic, like first

logic itself, or Ln with 2 < n < ω, Lω1,ω, etc.

An omitting types theorem for L, briefly an

OTT, is typically of the form ‘A countable fam-

ily of non–isolated types in a countable L the-

ory T can be omitted in a countable model of

T . From this it directly follows that if a type is

realizable in every model of a countable theory

T , then there should be a formula consistent

with T that isolates this type.



A type is simply a set of formulas Γ say. The

type Γ is realizable in a model if there is an as-

signment that satisfies (uniformly) all formulas

in Γ.

Finally, ϕ isolates Γ means that T ⊢ ϕ → ψ

for all ψ ∈ Γ. What Orey and Henkin proved is

that the OTT holds for Lω,ω when such types

are finitary, meaning that they all consist of

n-variable formulas for some n < ω.



OTT has an algebraic facet exhibited in the

property of atom-canonicity; which in turn re-

flects an important persistence property in modal

logic.

Algebraically, so–called persistence properties

refer to closure of a variety V under passage

from a given algebra A ∈ V to some ‘larger’

algebra A∗.

Canonicity, which is the most prominent per-

sistence property in modal logic, the ‘large al-

gebra’ A∗ is the canonical embedding algebra

(or perfect) extension of A, a complex algebra

based on the ultrafilter frame of A whose un-

derlying set is the set of all Boolean ultrafilters

of A.



A completely additive variety of Boolea alge-

bras with operators V is atom-canonical:

if whenever A ∈ V is atomic, then the com-

plex algebra of its atom structure, in symbols

CmAtA, is also in V. More concisely, V is such

if CmAtV ⊆ V.

Atom-canonicity is concerned with closure

under forming Dedekind-MacNeille completions

(sometimes occuring in the literature under the

name of the minimal completions) of atomic

algebras in the variety V, because for an atomic

A ∈ V, CmAtA is its Dedekind-MacNeille com-

pletion.

Though RCAn is canonical, it is not atom-

canonical for 2 < n < ω (to be proved in a

while). From non-atom-canonicity of RCAn, it

follows that RCAn cannot be axiomatized by

Sahlqvist equations.



We shall see that (non-) atom-canonicity of

subvarieties of RCAn is closely related to (the

failure) of some version of the OTT in modal

fragments of Ln, such that the clique guarded

fragment.

While the classical Orey-Henkin OTT holds

for Lω,ω, it is known that the OTT fails for Ln
in the following (strong) sense. For every 2 <

n ≤ l < ω, there is a countable and complete

Ln atomic theory T , and a single type, namely,

the type consisting of co-atoms of T , that is

realizable in every model of T , but cannot be

isolated by a formula ϕ using l variables. Such

ϕ will be referred to henceafter as a witness.
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Now we prove stronger negative OTTs for Ln
when types are required to be omitted with

respect to certain (much wider) generalized

semantics, called m-flat and m–square with

2 < n < m < ω. Considering such clique-

guarded semantics swiftly leads us to rich ter-

ritory.

Roughly if we zoom in by a ‘movable win-

dow’ to an m-square representation,

there will come a point determined bym, where

we mistake the m-square representation for an

ordinary (ω-square) one. Our proofs are al-

gebraic, demonstrating that, unlike CAn itself,

and like RCAn, infinitely many varieties of CAns

are not atom-canonical.



Blow up and blur constructions in con-

nection to failure of OTTs:

This subtle construction may be applied to

any two classes L ⊆ K of completely additive

Boolean algebras with operators (BAOs). One

takes an atomic A /∈ K (usually but not always

finite), blows it up, by splitting one or more

of its atoms each to infinitely many subatoms,

obtaining an (infinite) countable atomic Bb(A) ∈
L, such that A is blurred in Bb(A) meaning that

A does not embed in Bb(A), but A embeds in

the Dedekind-MacNeille completion of Bb(A),

namely, CmAtBb(A).

Then any class M say, between L and K

that is closed under forming subalgebras will

not be atom–canonical, for Bb(A) ∈ L(⊆ M),

but CmAtBb(A) /∈ K(⊇ M) because A /∈ M and

SM = M. We say, in this case, that L is not

atom–canonical with respect to K.



Let 2 < n ≤ l < m ≤ ω. We obtain nega-

tive results of the form Ψ(l,m): There exists

a countable, complete and atomic Ln first or-

der theory T in a signature L, meaning that

the Tarski Lindenbuam quotient algebra FmT
is atomic, such that the type Γ consisting of

co-atoms FmT is realizable in every m–square

model, but Γ cannot be isolated using ≤ l vari-

ables.

An m-square model of T is an m-square rep-

resentation of FmT . We succeed to prove Ψ(n,m)

for all m ≥ n(n+ 1)/2 + 1 and Ψ(l, ω) for all

n < l < ω. We say that VT fails almost every-

where.



From now on, unless otherwise indicated, n

is fixed to be a finite ordinal > 2.

Definition .1. An n–dimensional atomic net-

work on an atomic algebra A ∈ CAn is a map

N : n∆ → AtA, where ∆ is a non–empty fi-

nite set of nodes, denoted by nodes(N), satis-

fying the following consistency conditions for

all i < j < n:

(i) If x̄ ∈ nnodes(N) then N(x̄) ≤ dij ⇐⇒
x̄i = x̄j,

(ii) If x̄, ȳ ∈ nnodes(N), i < n and x̄ ≡i ȳ,
then N(x̄) ≤ ciN(ȳ),



Definition .2. Assume that A ∈ CAn is atomic
and that m, k ≤ ω. The atomic game Gmk (AtA),
or simply Gmk , is the game played on atomic
networks of A using m nodes and having k

rounds where ∀ is offered only one move, namely,
a cylindrifier move: Suppose that we are at
round t > 0. Then ∀ picks a previously played
network Nt (nodes(Nt) ⊆ m), i < n, a ∈ AtA,
x̄ ∈ nnodes(Nt), such that Nt(x̄) ≤ cia. For her
response, ∃ has to deliver a network M such
that nodes(M) ⊆ m, M ≡i N , and there is ȳ ∈
nnodes(M) that satisfies ȳ ≡i x̄ and M(ȳ) = a.
We write Gk(AtA), or simply Gk, for Gmk (AtA)
if m ≥ ω.

Lemma .3. Let 2 < n < ω, and assume that
m > n. If A ∈ CAn is finite and A has an
m-square representation then ∃ has a winning
strategy in Gmω (AtA). In particular, if ∀ has a
winning strategy in Gm(AtA), then A /∈ SNrnCAm.



Rainbow constructions:

Let G, R be two relational structures. Let

2 < n < ω. Then the colours used are:

• greens: gi (1 ≤ i ≤ n− 2), gi0, i ∈ G,

• whites : wi : i ≤ n− 2,

• reds: rij :i < j ∈ n,

• shades of yellow : yS : S a finite subset of ω

or S = ω.



A coloured graph is a graph such that each

of its edges is labelled by the colours in the

above first three items, greens, whites or reds,

and some n−1 hyperedges are also labelled by

the shades of yellow. Certain coloured graphs

will deserve special attention.

Definition .4.Let i ∈ G, and letM be a coloured

graph consisting of n nodes x0, . . . , xn−2, z. We

call M an i - cone if M(x0, z) = gi0 and for ev-

ery 1 ≤ j ≤ n − 2, M(xj, z) = gj, and no other

edge of M is coloured green. (x0, . . . , xn−2) is

called the base of the cone, z the apex of the

cone and i the tint of the cone.



The rainbow algebra depending on G and

R from the class K consisting of all coloured

graphs M such that:

M is a complete graph and M contains no tri-

angles (called forbidden triples) of the follow-

ing types:

(g, g
′
, g∗), (gi, gi,wi) ,1 ≤ i ≤ n− 2, (1)

(gj0, g
k
0,w0), j, k ∈ G, (2)

(rij, rj′k′, ri∗k∗) (3)

unless

|{(j, k), (j′, k′), (j∗, k∗)}| = 3

and no other triple of atoms is forbidden.



Let G and R be relational structures as above.

Take the set J consisting of all surjective maps

a : n → ∆, where ∆ ∈ K and define an equiv-

alence relation ∼ on this set relating two such

maps iff they essentially define the same graph.

Let At be the atom structure with underly-

ing set J/ ∼= {[a] : a ∈ J}. We denote the

equivalence class of a by [a]. Then define,

for i < j < n, the accessibility relations cor-

responding to ijth–diagonal element, and ith–

cylindrifier, as follows:

(1) [a] ∈ Eij iff a(i) = a(j),

(2) [a]Ti[b] iff a � n r {i} = b � n r {i},

These definitions are sound (do not depend

on the representatives). Now consider the atom

structure At = (J/ ∼, Ti, Eij)i,j<n.



Let AG,R be the complex algebra over At.

That is to say, the domain of AG,R is ℘(At). The

boolean operations are the usual set theoretic

intersections and taking complements and the

extra non boolean operations are defined for

X ⊆ At as follows

ciX = {[b] ∈ J : ∃[a] ∈ X [a]Ti[b]},

dij = Eij.

This, as easily checked, defines a CAn atom

structure. The complex CAn over this atom

structure will be denoted by AG,R



For rainbow atom structures, there is a one

to one correspondence between atomic net-

works and coloured graphs, so for 2 < n < m ≤
ω, we use the graph versions of the games Gmk ,

k ≤ ω, and Gm played on rainbow atom struc-

tures of dimension m.

The the atomic k rounded game game Gmk
where the number of nodes are limited to n to

games on coloured graphs.

The typical winning strategy for ∀ in the

graph version of both atomic games is bom-

barding ∃ with cones having a common base

and green tints until she runs out of (suitable)

reds, that is to say, reds whose indicies do not

match.



Theorem .5. 1. Let 2 < n < ω and t(n) =

n(n+ 1)/2 + 1. The variety RCAn is not-atom

canonical with respect to SNrnCAt(n).

2. In fact, there is a countable atomic simple

A ∈ RCAn such that CmAtA does not have an

t(n)-square,a fortiori t(n)- flat, representation.



The proof is divided into four parts:

1: Blowing up and blurring Bf forming

a weakly representable atom structure At:

Take the finite rainbow CAn, Bf where the reds

R is the complete irreflexive graph n, and the

greens are {gi : 1 ≤ i < n − 1} ∪ {gi0 : 1 ≤ i ≤
n(n − 1)/2 + 2}, endowed with the cylindric

operations. We will blow up and blur the

atom structure of Bf , which we call Atf ; so

that Atf = At(Bf).



One then defines a larger the class of coloured

graphs. Let 2 < n < ω. Then the colours used

are like above except that each red is ‘split’

into ω many having ‘copies’ the form rlij with

i < j < n and l ∈ ω, with an additional shade of

red ρ such that the consistency conditions for

the new reds (in addition to the usual rainbow

consistency conditions) are as follows:

1. (rijk, r
i
j′k′, r

i∗
j∗k∗) unless i = i′ = i∗ and

|{(j, k), (j′, k′), (j∗, k∗)}| = 3

2. (r, ρ, ρ) and (r, r∗, ρ), where r, r∗ are any

reds.

The consistency conditions can be coded in

an Lω,ω theory T having signture the reds with

ρ together with all other colours. The theory T

is only a first order theory (not an Lω1,ω theory)

because the number of greens is finite..



One construct an n-homogeneous model M is

as a countable limit of finite models of T using

a game played between ∃ and ∀. In the rainbow

game ∀ challenges ∃ with cones having green

tints (gi0), and ∃ wins if she can respond to such

moves. This is the only way that ∀ can force

a win. ∃ has to respond by labelling appexes

of two succesive cones, having the same base

played by ∀.

By the rules of the game, she has to use a red

label. She resorts to ρ whenever she is forced a

red while using the rainbow reds will lead to an

inconsistent triangle of reds. The number of

greens make this strategy work. The winning

strategy is implemented by ∃ using the red la-

bel ρ (a non-principal ultrafilter) that comes to

her rescue whenever she runs out of ‘rainbow

reds’.,



2. Representing a term algebra (and its

completion) as (generalized) set algebras:

Having M at hand, one constructs two atomic

n–dimensional set algebras based on M, sharing

the same atom structure and having the same

top element.

Deleting the one available red shade, set

W = {ā ∈ nM : M |= (
∧

i<j<n

¬ρ(xi, xj))(ā)},

and for ϕ ∈ Ln∞,ω, let ϕ
W = {s ∈W : M |= ϕ[s]}.

Here W is the set of all n–ary assignments in
nM, that have no edge labelled by ρ.



Let A be the relativized set algebra with

domain {φW : φ a first-order Ln− formula}
and unit W , endowed with the usual concrete

operations read off the connectives.

Classical semantics for Ln rainbow formulas

and their semantics by relativizing to W co-

incide but not with respect to Ln∞,ω rainbow

formulas. Hence the set algebra A is isomor-

phic to a cylinric set algebra of dimension n

having top element nM, so A is simple, in fact

its Df reduct is simple.



Let E = {ϕW : ϕ ∈ Ln∞,ω} with the opera-

tions defined like on A the usual way.

We have an isomorphism from CmAt to E

defined via X 7→
∪
X. Since AtA = AtTm(AtA),

which we refer to only by At, and TmAtA ⊆ A,

hence TmAtA = TmAt is representable. The

atoms of A, TmAtA and CmAtA = CmAt are the

coloured graphs whose edges are not labelled

by ρ.

3. Embedding Bf into CmAt by mapping

each atom the suprema of its subatoms

which exist in the complete CmAt



Let CRGf be the class of coloured graphs on

Atf and CRG be the class of coloured graph on

At. We can (and will) assume that CRGf ⊆
CRG.

Write Ma for the atom that is the (equiv-

alence class of the) surjection a : n → M ,

M ∈ CGR. Here we identify a with [a]; no harm

will ensue. We define the (equivalence) rela-

tion ∼ on At by Mb ∼ Na, (M,N ∈ CGR) :

1. a(i) = a(j) ⇐⇒ b(i) = b(j),

2. Ma(a(i), a(j)) = rl ⇐⇒ Nb(b(i), b(j)) =

rk, for some l, k ∈ ω,

and othersise identical.

Define the map Θ from Bf = CmAtf to CmAt,

by specifing first its values on Atf , via Ma 7→∑
jM

(j)
a where M(j)

a is a copy of Ma.



4. ∀ has a winning strategy in Gt(n)At(Bf);

and the required result:

It is straightforward to show that ∀ has win-

ning strategy first in the Ehrenfeucht–Fräıssé

forth private game played between ∃ and ∀ on

the complete irreflexive graphs n+ 1(≤ n(n −
1)/2+1) and n in n+1 rounds EFn+1

n+1(n+1, n)

since n+1 is ‘longer’ than n.

Using (any) p > n many pairs of pebbles aval-

able on the board ∀ can win this game in n+1

many rounds.

∀ lifts his winning strategy from the lst pri-

vate Ehrenfeucht–Fräıssé forth game to the

graph game on Atf = At(Bf) forcing a win

using t(n) nodes.



One uses the n(n − 1)/2 + 2 green relations

in the usual way to force a red clique C, say

with n(n− 1)/2+ 2.

He needs n − 1 nodes as the base of cones,

plus |P | + 2 more nodes, where P = {(i, j) :

i < j < n} forming a red clique, triangle with

two edges satisfying the same rmp for p ∈ P .

Calculating, we get t(n) = n−1+n(n−1)/2+

2 = n(n+1)/2+ 1.

Then by the above Lemma, Bf /∈ SNrnCAt(n).

. But Bf embeds into CmAtA, hence CmAtA is

outside the variety SNrnCAt(n), as well.



Proof of the required

Using easy algebraic arguments we can

prove Ψ(n,m) for all m ≥ t(n) = n(n+1)/2+

1 and Ψ(l, ω) for any 2 < n < l < ω from

the joint result with Andréka and Németi

of constucting for all such l a countable

atomic algebra A ∈ RCAc ∩ NrnCAl such that

CmAtA /∈ RCAn.



Let Gm be the ω- rounded game using m

nodes where ∀ has the option to reuse the m

nodes in play.

Lemma .6. Let 2 < n < ω and n < m. If
A∈ ScNrnCAm then ∃ has a winning strategy in
Gm(AtC)

Theorem .7.Any class K such that SdNrnCAω ⊆
K ⊆ ScNrnCAn+3, K is not elementary

1. Take the polyadic requality rainbow–like
PEAn, call it C, based on the ordered structure
Z and N. The reds R is the set {rij : i < j <

ω(= N)} and the green colours used constitute
the set {gi : 1 ≤ i < n − 1} ∪ {gi0 : i ∈ Z}. In
complete coloured graphs the forbidden triples
are like the usual rainbow constructions based
on Z and N, but now the triple (gi0, g

j
0, rkl) is

also forbidden if {(i, k), (j, l)} is not an order
preserving partial function from Z → N.



2. It can be shown that ∀ has a winning strat-

egy in the graph version of the game Gn+3(AtC)

played on coloured graphs. The rough idea

here, is that, as is the case with winning strat-

egy’s of ∀ in rainbow constructions, ∀ bom-

bards ∃ with cones having distinct green tints

demanding a red label from ∃ to appexes of

succesive cones.

The number of nodes are limited but ∀ has

the option to re-use them, so this process will

not end after finitely many rounds. The added

order preserving condition relating two greens

and a red, forces ∃ to choose red labels, one

of whose indices form a decreasing sequence

in N. In ω many rounds ∀ forces a win, so

C /∈ ScNrnCAn+3.



3. I devise a game a k rounded game (stronger

than Gk involving two amalgamation new moves)

Hk such that if ∃ has a winning strategy in

Hk(α), α an atom structure, then Cmα ∈ NrnCAω
α ∈ AtNrnCAω. I show that ∃ has a winning

strategy in Hk(AtC) for all k < ω. For each

k < ω, let σk describe the winning strategy of

Hk(α) where we assume C = Tmα. Let D be

a non–principal ultrapower of C. Then ∃ has a

winning strategy σ in Hω(AtD)



4. Now let B =
∪
i<ω Ai. This is acount-

able elementary subalgebra of D, hence nec-

essarily atomic, and ∃ has a winning strat-

egy in Hω(AtB). So we get that CmAtB ∈
NrnCAω. Since B ⊆d CmAtB, then B ∈ SdNrnCAω
,B ∈ CRCAn. But ∀ has a winning strategy in

Gm(AtB), C /∈ ScNrnCAm. To finalize the proof,

let K be as given. Then B ≡ C, B ∈ K(⊆
SdNrnCAω ∩ CRCAn), but C /∈ ScNrnCAn+3(⊇ K)

giving that K is not elementary.


