Omitting types for finite variable fragments of first order logic Tarek Sayed Ahmed Unless otherwise indicated n is fixed to be a finite ordinal > 2. Let \mathfrak{L} be an extension or reduct or variant of first order logic, like first logic itself, or L_n with $2 < n < \omega$, $L_{\omega_1,\omega}$, etc.

An omitting types theorem for \mathfrak{L} , briefly an OTT, is typically of the form 'A countable family of non-isolated types in a countable \mathfrak{L} theory T can be omitted in a countable model of T. From this it directly follows that if a type is realizable in every model of a countable theory T, then there should be a formula consistent with T that isolates this type. A type is simply a set of formulas Γ say. The type Γ is realizable in a model if there is an assignment that satisfies (uniformly) all formulas in Γ .

Finally, ϕ isolates Γ means that $T \vdash \phi \rightarrow \psi$ for all $\psi \in \Gamma$. What Orey and Henkin proved is that the OTT holds for $L_{\omega,\omega}$ when such types are *finitary*, meaning that they all consist of *n*-variable formulas for some $n < \omega$. OTT has an algebraic facet exhibited in the property of *atom-canonicity*; which in turn reflects an important *persistence* property in modal logic.

Algebraically, so-called *persistence properties* refer to closure of a variety V under passage from a given algebra $\mathfrak{A} \in V$ to some 'larger' algebra \mathfrak{A}^* .

Canonicity, which is the most prominent persistence property in modal logic, the 'large algebra' \mathfrak{A}^* is the canonical embedding algebra (or perfect) extension of \mathfrak{A} , a complex algebra based on the *ultrafilter frame* of \mathfrak{A} whose underlying set is the set of all Boolean ultrafilters of \mathfrak{A} . A completely additive variety of Boolea algebras with operators V is *atom-canonical*:

if whenever $\mathfrak{A} \in V$ is atomic, then the complex algebra of its atom structure, in symbols $\mathfrak{CmAt}\mathfrak{A}$, is also in V. More concisely, V is such if $\mathfrak{CmAt}V \subseteq V$.

Atom-canonicity is concerned with closure under forming Dedekind-MacNeille completions (sometimes occuring in the literature under the name of *the minimal completions*) of atomic algebras in the variety V, because for an atomic $\mathfrak{A} \in V$, $\mathfrak{CmAt}\mathfrak{A}$ is its Dedekind-MacNeille completion.

Though RCA_n is canonical, it is not atomcanonical for $2 < n < \omega$ (to be proved in a while). From non-atom-canonicity of RCA_n , it follows that RCA_n cannot be axiomatized by Sahlqvist equations. We shall see that (non-) atom-canonicity of subvarieties of RCA_n is closely related to (the failure) of some version of the OTT in modal fragments of L_n , such that the clique guarded fragment.

While the classical Orey-Henkin OTT holds for $L_{\omega,\omega}$, it is known that the OTT fails for L_n in the following (strong) sense. For every 2 < $n \leq l < \omega$, there is a countable and complete L_n atomic theory T, and a single type, namely, the type consisting of co-atoms of T, that is realizable in every model of T, but cannot be isolated by a formula ϕ using l variables. Such ϕ will be referred to henceafter as a *witness*.

Tarek Sayed Ahmed, H. Andréka, and I. Németi, *Omitting types for finite variable fragments and complete representations of algebras*. Journal of Symbolic Logic **73**(1) (2008) pp.65-89. Now we prove stronger negative OTTs for L_n when types are required to be omitted with respect to certain (much wider) generalized semantics, called *m*-flat and *m*-square with $2 < n < m < \omega$. Considering such *clique-guarded* semantics swiftly leads us to rich territory.

Roughly if we zoom in by a 'movable window' to an m-square representation,

there will come a point determined by m, where we mistake the m-square representation for an ordinary (ω -square) one. Our proofs are algebraic, demonstrating that, unlike CA_n itself, and like RCA_n, infinitely many varieties of CA_ns are not atom-canonical.

Blow up and blur constructions in connection to failure of OTTs:

This subtle construction may be applied to any two classes $\mathbf{L} \subseteq \mathbf{K}$ of completely additive Boolean algebras with operators (BAOs). One takes an atomic $\mathfrak{A} \notin \mathbf{K}$ (usually but not always finite), blows it up, by splitting one or more of its atoms each to infinitely many subatoms, obtaining an (infinite) *countable* atomic $\mathfrak{B}b(\mathfrak{A}) \in$ \mathbf{L} , such that \mathfrak{A} *is blurred* in $\mathfrak{B}b(\mathfrak{A})$ meaning that \mathfrak{A} *does not* embed in $\mathfrak{B}b(\mathfrak{A})$, but \mathfrak{A} embeds in the Dedekind-MacNeille completion of $\mathfrak{B}b(\mathfrak{A})$, namely, $\mathfrak{CmAt}\mathfrak{B}b(\mathfrak{A})$.

Then any class M say, between L and K that is closed under forming subalgebras will not be atom-canonical, for $\mathfrak{B}b(\mathfrak{A}) \in L(\subseteq M)$, but $\mathfrak{CmAt}\mathfrak{B}b(\mathfrak{A}) \notin K(\supseteq M)$ because $\mathfrak{A} \notin M$ and SM = M. We say, in this case, that L *is not atom-canonical with respect to* K.

Let $2 < n \leq l < m \leq \omega$. We obtain negative results of the form $\Psi(l,m)$: There exists a countable, complete and atomic L_n first order theory T in a signature L, meaning that the Tarski Lindenbuam quotient algebra \mathfrak{Fm}_T is atomic, such that the type Γ consisting of co-atoms \mathfrak{Fm}_T is realizable in every m-square model, but Γ cannot be isolated using $\leq l$ variables.

An *m*-square model of *T* is an *m*-square representation of \mathfrak{Fm}_T . We succeed to prove $\Psi(n,m)$ for all $m \ge n(n+1)/2 + 1$ and $\Psi(l,\omega)$ for all $n < l < \omega$. We say that VT fails almost everywhere.

From now on, unless otherwise indicated, n is fixed to be a finite ordinal > 2.

Definition .1. An *n*-dimensional atomic network on an atomic algebra $\mathfrak{A} \in CA_n$ is a map $N : {}^n\Delta \to At\mathfrak{A}$, where Δ is a non-empty finite set of *nodes*, denoted by nodes(N), satisfying the following consistency conditions for all i < j < n:

(i) If $\bar{x} \in {}^{n} \operatorname{nodes}(N)$ then $N(\bar{x}) \leq d_{ij} \iff \bar{x}_{i} = \bar{x}_{j}$,

(ii) If $\bar{x}, \bar{y} \in {}^{n} \operatorname{nodes}(N)$, i < n and $\bar{x} \equiv_{i} \bar{y}$, then $N(\bar{x}) \leq c_{i}N(\bar{y})$, **Definition .2.** Assume that $\mathfrak{A} \in CA_n$ is atomic and that $m, k \leq \omega$. The *atomic game* $G_k^m(At\mathfrak{A})$, *or simply* G_k^m , is the game played on atomic networks of \mathfrak{A} using m nodes and having krounds where \forall is offered only one move, namely, *a cylindrifier move*: Suppose that we are at round t > 0. Then \forall picks a previously played network N_t (nodes $(N_t) \subseteq m$), i < n, $a \in At\mathfrak{A}$, $\overline{x} \in {}^n$ nodes (N_t) , such that $N_t(\overline{x}) \leq c_i a$. For her response, \exists has to deliver a network M such that nodes $(M) \subseteq m$, $M \equiv_i N$, and there is $\overline{y} \in$ n nodes(M) that satisfies $\overline{y} \equiv_i \overline{x}$ and $M(\overline{y}) = a$. We write $G_k(At\mathfrak{A})$, or simply G_k , for $G_k^m(At\mathfrak{A})$ if $m \geq \omega$.

Lemma .3. Let $2 < n < \omega$, and assume that m > n. If $\mathfrak{A} \in CA_n$ is finite and \mathfrak{A} has an *m*-square representation then \exists has a winning strategy in $G^m_{\omega}(At\mathfrak{A})$. In particular, if \forall has a winning strategy in $G^m(At\mathfrak{A})$, then $\mathfrak{A} \notin SNr_nCA_m$.

Rainbow constructions:

Let G, R be two relational structures. Let $2 < n < \omega$. Then the colours used are:

- greens: g_i $(1 \leq i \leq n-2)$, g_0^i , $i \in \mathsf{G}$,
- whites : $w_i : i \leq n-2$,
- reds: r_{ij} : $i < j \in n$,
- shades of yellow : $y_S : S$ a finite subset of ω or $S = \omega$.

A coloured graph is a graph such that each of its edges is labelled by the colours in the above first three items, greens, whites or reds, and some n-1 hyperedges are also labelled by the shades of yellow. Certain coloured graphs will deserve special attention.

Definition .4. Let $i \in G$, and let M be a coloured graph consisting of n nodes x_0, \ldots, x_{n-2}, z . We call M an i - cone if $M(x_0, z) = g_0^i$ and for every $1 \leq j \leq n-2$, $M(x_j, z) = g_j$, and no other edge of M is coloured green. (x_0, \ldots, x_{n-2}) is called the base of the cone, z the apex of the cone and i the tint of the cone.

The rainbow algebra depending on G and R from the class \mathbf{K} consisting of all coloured graphs M such that:

M is a complete graph and M contains no triangles (called forbidden triples) of the following types:

$$\begin{array}{ll} (\mathsf{g},\mathsf{g}',\mathsf{g}^*),(\mathsf{g}_i,\mathsf{g}_i,\mathsf{w}_i) &, 1 \leq i \leq n-2, & (1) \\ (\mathsf{g}_0^j,\mathsf{g}_0^k,\mathsf{w}_0),j,k \in \mathsf{G}, & (2) \\ & (\mathsf{r}_{ij},\mathsf{r}_{j'k'},\mathsf{r}_{i^*k^*}) & (3) \end{array}$$

$$r_{ij}, r_{j'k'}, r_{i^*k^*}$$
 (3)

unless

$$|\{(j,k),(j',k'),(j^*,k^*)\}| = 3$$

and no other triple of atoms is forbidden.

Let G and R be relational structures as above. Take the set J consisting of all surjective maps $a : n \to \Delta$, where $\Delta \in \mathbf{K}$ and define an equivalence relation \sim on this set relating two such maps iff they essentially define the same graph.

Let At be the atom structure with underlying set $J/ \sim = \{[a] : a \in J\}$. We denote the equivalence class of a by [a]. Then define, for i < j < n, the accessibility relations corresponding to ijth-diagonal element, and ithcylindrifier, as follows:

- (1) $[a] \in E_{ij}$ iff a(i) = a(j),
- (2) $[a]T_i[b]$ iff $a \upharpoonright n \smallsetminus \{i\} = b \upharpoonright n \smallsetminus \{i\}$,

These definitions are sound (do not depend on the representatives). Now consider the atom structure At = $(J/ \sim, T_i, E_{ij})_{i,j < n}$. Let $\mathfrak{A}_{G,R}$ be the complex algebra over At. That is to say, the domain of $\mathfrak{A}_{G,R}$ is $\wp(At)$. The boolean operations are the usual set theoretic intersections and taking complements and the extra non boolean operations are defined for $X \subseteq At$ as follows

 $\mathsf{c}_i X = \{ [b] \in \mathsf{J} : \exists [a] \in X \ [a] T_i[b] \},\$

$$\mathsf{d}_{ij} = E_{ij.}$$

This, as easily checked, defines a CA_n atom structure. The complex CA_n over this atom structure will be denoted by $\mathfrak{A}_{G,R}$

For rainbow atom structures, there is a one to one correspondence between atomic networks and coloured graphs, so for $2 < n < m \leq \omega$, we use the graph versions of the games G_k^m , $k \leq \omega$, and \mathbf{G}^m played on rainbow atom structures of dimension m.

The the atomic k rounded game game G_k^m where the number of nodes are limited to n to games on coloured graphs.

The typical winning strategy for \forall in the graph version of both atomic games is bombarding \exists with cones having a common base and *green* tints until she runs out of (suitable) *reds*, that is to say, reds whose indicies do not match.

Theorem .5. 1. Let $2 < n < \omega$ and t(n) = n(n+1)/2 + 1. The variety RCA_n is not-atom canonical with respect to $SNr_nCA_{t(n)}$.

2. In fact, there is a countable atomic simple $\mathfrak{A} \in \mathsf{RCA}_n$ such that $\mathfrak{CmAt}\mathfrak{A}$ does not have an t(n)-square, a fortiori t(n)- flat, representation.

The proof is divided into four parts:

1: Blowing up and blurring \mathfrak{B}_f forming a weakly representable atom structure At: Take the finite rainbow CA_n , \mathfrak{B}_f where the reds R is the complete irreflexive graph n, and the greens are $\{g_i : 1 \le i < n-1\} \cup \{g_0^i : 1 \le i \le n(n-1)/2 + 2\}$, endowed with the cylindric operations. We will blow up and blur the atom structure of \mathfrak{B}_f , which we call At_f ; so that $At_f = At(\mathfrak{B}_f)$. One then defines a larger the class of coloured graphs. Let $2 < n < \omega$. Then the colours used are like above except that each red is 'split' into ω many having 'copies' the form r_{ij}^l with i < j < n and $l \in \omega$, with an additional shade of red ρ such that the consistency conditions for the new reds (in addition to the usual rainbow consistency conditions) are as follows:

1.
$$(r_{jk}^i, r_{j'k'}^i, r_{j^*k^*}^{i^*})$$
 unless $i = i' = i^*$ and
 $|\{(j,k), (j',k'), (j^*,k^*)\}| = 3$

2. (r, ρ, ρ) and (r, r^*, ρ) , where r, r^* are any reds.

The consistency conditions can be coded in an $L_{\omega,\omega}$ theory T having signture the reds with ρ together with all other colours. The theory Tis only a first order theory (not an $L_{\omega_1,\omega}$ theory) because the number of greens is finite.. One construct an *n*-homogeneous model M is as a countable limit of finite models of T using a game played between \exists and \forall . In the rainbow game \forall challenges \exists with *cones* having green *tints* (g_0^i), and \exists wins if she can respond to such moves. This is the only way that \forall can force a win. \exists has to respond by labelling *appexes* of two succesive cones, having the *same base* played by \forall .

By the rules of the game, she has to use a red label. She resorts to ρ whenever she is forced a red while using the rainbow reds will lead to an inconsistent triangle of reds. The number of greens make this strategy work. The winning strategy is implemented by \exists using the red label ρ (a non-principal ultrafilter) that comes to her rescue whenever she runs out of 'rainbow reds'.,

2. Representing a term algebra (and its completion) as (generalized) set algebras: Having M at hand, one constructs two atomic n-dimensional set algebras based on M, sharing the same atom structure and having the same top element.

Deleting the one available red shade, set

$$W = \{ \bar{a} \in {}^{n}\mathsf{M} : \mathsf{M} \models (\bigwedge_{i < j < n} \neg \rho(x_i, x_j))(\bar{a}) \},\$$

and for $\phi \in L^n_{\infty,\omega}$, let $\phi^W = \{s \in W : M \models \phi[s]\}$. Here W is the set of all *n*-ary assignments in ^{*n*}M, that have no edge labelled by ρ . Let \mathfrak{A} be the relativized set algebra with domain { $\varphi^W : \varphi$ a first-order L_n – formula} and unit W, endowed with the usual concrete operations read off the connectives.

Classical semantics for L_n rainbow formulas and their semantics by relativizing to W coincide but not with respect to $L_{\infty,\omega}^n$ rainbow formulas. Hence the set algebra \mathfrak{A} is isomorphic to a cylinric set algebra of dimension nhaving top element ⁿM, so \mathfrak{A} is simple, in fact its Df reduct is simple.

Let $\mathfrak{E} = \{\phi^W : \phi \in L^n_{\infty,\omega}\}$ with the operations defined like on \mathfrak{A} the usual way.

We have an isomorphism from \mathfrak{CmAt} to \mathfrak{E} defined via $X \mapsto \bigcup X$. Since $\operatorname{At}\mathfrak{A} = \operatorname{At}\mathfrak{Tm}(\operatorname{At}\mathfrak{A})$, which we refer to only by At , and $\operatorname{TmAt}\mathfrak{A} \subseteq \mathfrak{A}$, hence $\operatorname{TmAt}\mathfrak{A} = \operatorname{TmAt}$ is representable. The atoms of \mathfrak{A} , $\operatorname{TmAt}\mathfrak{A}$ and $\operatorname{\mathfrak{CmAt}}\mathfrak{A} = \mathfrak{CmAt}$ are the coloured graphs whose edges are *not labelled* by ρ .

3. Embedding \mathfrak{B}_f into \mathfrak{CmAt} by mapping each atom the suprema of its subatoms which exist in the complete \mathfrak{CmAt} Let CRG_f be the class of coloured graphs on At_f and CRG be the class of coloured graph on At. We can (and will) assume that $CRG_f \subseteq CRG$.

Write M_a for the atom that is the (equivalence class of the) surjection $a : n \to M$, $M \in CGR$. Here we identify a with [a]; no harm will ensue. We define the (equivalence) relation ~ on At by $M_b \sim N_a$, $(M, N \in CGR)$:

1. $a(i) = a(j) \iff b(i) = b(j),$

2. $M_a(a(i), a(j)) = r^l \iff N_b(b(i), b(j)) = r^k$, for some $l, k \in \omega$,

and othersise identical.

Define the map Θ from $\mathfrak{B}_f = \mathfrak{CmAt}_f$ to \mathfrak{CmAt}_f , by specifing first its values on \mathbf{At}_f , via $M_a \mapsto \sum_j M_a^{(j)}$ where $M_a^{(j)}$ is a copy of M_a .

4. \forall has a winning strategy in $G^{t(n)}At(\mathfrak{B}_f)$; and the required result:

It is straightforward to show that \forall has winning strategy first in the Ehrenfeucht–Fraïssé forth private game played between \exists and \forall on the complete irreflexive graphs $n + 1 (\leq n(n - 1)/2 + 1)$ and n in n + 1 rounds $\text{EF}_{n+1}^{n+1}(n+1,n)$ since n + 1 is 'longer' than n.

Using (any) p > n many pairs of pebbles avalable on the board \forall can win this game in n+1 many rounds.

 \forall lifts his winning strategy from the lst private Ehrenfeucht-Fraïssé forth game to the graph game on $\operatorname{At}_f = \operatorname{At}(\mathfrak{B}_f)$ forcing a win using t(n) nodes.

One uses the n(n-1)/2 + 2 green relations in the usual way to force a red clique C, say with n(n-1)/2 + 2.

He needs n - 1 nodes as the base of cones, plus |P| + 2 more nodes, where $P = \{(i, j) :$ $i < j < n\}$ forming a red clique, triangle with two edges satisfying the same r_p^m for $p \in P$. Calculating, we get t(n) = n - 1 + n(n-1)/2 +2 = n(n+1)/2 + 1.

Then by the above Lemma, $\mathfrak{B}_f \notin SNr_nCA_{t(n)}$. . But \mathfrak{B}_f embeds into $\mathfrak{CmAt}\mathfrak{A}$, hence $\mathfrak{CmAt}\mathfrak{A}$ is outside the variety $SNr_nCA_{t(n)}$, as well.

Proof of the required

Using easy algebraic arguments we can prove $\Psi(n,m)$ for all $m \ge t(n) = n(n+1)/2 +$ 1 and $\Psi(l,\omega)$ for any $2 < n < l < \omega$ from the joint result with Andréka and Németi of constucting for all such l a countable atomic algebra $\mathfrak{A} \in \operatorname{RCA}_c \cap \operatorname{Nr}_n\operatorname{CA}_l$ such that $\operatorname{\mathfrak{CmAt}} \mathfrak{A} \notin \operatorname{RCA}_n$. Let \mathbf{G}^m be the ω - rounded game using m nodes where \forall has the option to reuse the m nodes in play.

Lemma .6. Let $2 < n < \omega$ and n < m. If $A \in S_c Nr_n CA_m$ then \exists has a winning strategy in $G^m(At\mathfrak{C})$

Theorem .7. Any class \mathbf{K} such that $\mathbf{S}_d \operatorname{Nr}_n \operatorname{CA}_\omega \subseteq \mathbf{K} \subseteq \mathbf{S}_c \operatorname{Nr}_n \operatorname{CA}_{n+3}$, \mathbf{K} is not elementary

1. Take the polyadic requality rainbow-like PEA_n, call it \mathfrak{C} , based on the ordered structure \mathbb{Z} and \mathbb{N} . The reds R is the set $\{\mathsf{r}_{ij} : i < j < \omega(=\mathbb{N})\}$ and the green colours used constitute the set $\{\mathsf{g}_i : 1 \leq i < n-1\} \cup \{\mathsf{g}_0^i : i \in \mathbb{Z}\}$. In complete coloured graphs the forbidden triples are like the usual rainbow constructions based on \mathbb{Z} and \mathbb{N} , but now the triple $(\mathsf{g}_0^i, \mathsf{g}_0^j, \mathsf{r}_{kl})$ is also forbidden if $\{(i,k), (j,l)\}$ is not an order preserving partial function from $\mathbb{Z} \to \mathbb{N}$.

2. It can be shown that \forall has a winning strategy in the graph version of the game $G^{n+3}(At\mathfrak{C})$ played on coloured graphs. The rough idea here, is that, as is the case with winning strategy's of \forall in rainbow constructions, \forall bombards \exists with cones having distinct green tints demanding a red label from \exists to appexes of succesive cones.

The number of nodes are limited but \forall has the option to re-use them, so this process will not end after finitely many rounds. The added order preserving condition relating two greens and a red, forces \exists to choose red labels, one of whose indices form a decreasing sequence in \mathbb{N} . In ω many rounds \forall forces a win, so $\mathfrak{C} \notin \mathbf{S}_c \operatorname{Nr}_n \operatorname{CA}_{n+3}$. 3. I devise a game a k rounded game (stronger than G_k involving two amalgamation new moves) \mathbf{H}_k such that if \exists has a winning strategy in $H_k(\alpha)$, α an atom structure, then $\mathfrak{Cm}\alpha \in \operatorname{Nr}_n \operatorname{CA}_\omega$ $\alpha \in \operatorname{AtNr}_n \operatorname{CA}_\omega$. I show that \exists has a winning strategy in $\mathbf{H}_k(\operatorname{At}\mathfrak{C})$ for all $k < \omega$. For each $k < \omega$, let σ_k describe the winning strategy of $\mathbf{H}_k(\alpha)$ where we assume $\mathfrak{C} = \mathfrak{Tm}\alpha$. Let \mathfrak{D} be a non-principal ultrapower of \mathfrak{C} . Then \exists has a winning strategy σ in $\mathbf{H}_\omega(\operatorname{At}\mathfrak{D})$ 4. Now let $\mathfrak{B} = \bigcup_{i < \omega} \mathfrak{A}_i$. This is acountable elementary subalgebra of \mathfrak{D} , hence necessarily atomic, and \exists has a winning strategy in $\mathbf{H}_{\omega}(\operatorname{At}\mathfrak{B})$. So we get that $\mathfrak{CmAt}\mathfrak{B} \in$ Nr_nCA_{ω}. Since $\mathfrak{B} \subseteq_d \mathfrak{CmAt}\mathfrak{B}$, then $\mathfrak{B} \in \mathbf{S}_d \operatorname{Nr}_n \operatorname{CA}_{\omega}$, $\mathfrak{B} \in \operatorname{CRCA}_n$. But \forall has a winning strategy in $\mathbf{G}^m(\operatorname{At}\mathfrak{B})$, $\mathfrak{C} \notin \mathbf{S}_c \operatorname{Nr}_n \operatorname{CA}_m$. To finalize the proof, let K be as given. Then $\mathfrak{B} \equiv \mathfrak{C}$, $\mathfrak{B} \in \mathbf{K}(\subseteq \mathbf{S}_d \operatorname{Nr}_n \operatorname{CA}_{\omega} \cap \operatorname{CRCA}_n)$, but $\mathfrak{C} \notin \mathbf{S}_c \operatorname{Nr}_n \operatorname{CA}_{n+3}(\supseteq \mathbf{K})$ giving that K is not elementary.