Now, can or cannot classical kinematics interpret special relativity?

Gergely Székely

Rényi Institute

This talk is based on joint works with Hajnal Andréka, Koen Lefever, Judit X. Madarász, and István Németi.

Overview

- 1 The non-interpretability of Th(RS) in Th(CS)
- 2 The interpetation of SpecRel in ClassicalKin
- Resolving the apparent contradiction
 - The key difference between ClassicalKin and Th(CS)
 - Hajnal Andréka's conjecture
 - Sketch of a missing bridge

The non-interpretability of $Th(\mathcal{RS})$ in $Th(\mathcal{CS})$ The interpretation of SpecRel in ClassicalKin Resolving the apparent contradiction

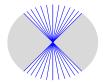
The non-interpretability of $\mathit{Th}(\mathcal{RS})$ in $\mathit{Th}(\mathcal{CS})$

Classical Spacetime

$$\mathcal{CS} = \left\langle \mathbb{R}^4, \mathsf{col}^\infty \right\rangle$$

Relativistic Spacetime

$$\mathcal{RS} = \left\langle \mathbb{R}^4, \mathsf{col}^t \right
angle$$

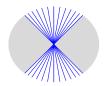


Classical Spacetime

Relativistic Spacetime

$$\mathcal{CS} = \left\langle \mathbb{R}^4, \mathsf{col}^\infty \right\rangle$$

$$\mathcal{RS} = \langle \mathbb{R}^4, \mathsf{col}^t \rangle$$



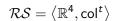
Theorem

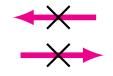
Th(CS) cannot be interpreted in Th(RS).

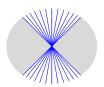
Classical Spacetime

Relativistic Spacetime

$$\mathcal{CS} = \left\langle \mathbb{R}^4, \mathsf{col}^\infty \right\rangle$$







Theorem

Th(CS) cannot be interpreted in Th(RS).

Theorem

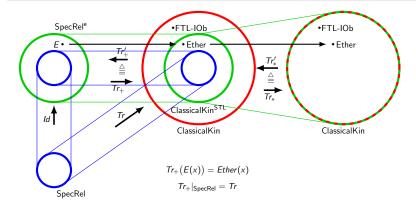
Th(RS) cannot be interpreted in Th(CS), either.

The non-interpretability of $Th(\mathcal{RS})$ in $Th(\mathcal{CS})$ The interpretation of SpecRel in ClassicalKin Resolving the apparent contradiction

The interpetation of SpecRel in ClassicalKin

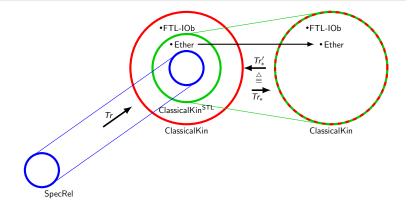
Theorem

SpecRel^e and ClassicalKin are definitionally equivalent.



Theorem

SpecRel can be interpreted in ClassicalKin.



The paradox to resolve:

Theorem

Th(RS) cannot be interpreted in Th(CS).

Special relativity cannot be interpreted in classical kinematics.

Theorem

SpecRel can be interpreted in ClassicalKin.

Special relativity **can** be interpreted in classical kinematics.

The non-interpretability of $Th(\mathcal{RS})$ in $Th(\mathcal{CS})$ The interpretation of SpecRel in ClassicalKin Resolving the apparent contradiction

Fhe key difference between ClassicalKin and $\mathit{Th}(\mathcal{CS})$ Hajnal Andréka's conjecture
Sketch of a missing bridge

So who is right?

The key difference between ClassicalKin and $\mathit{Th}(\mathcal{CS})$ Hajnal Andréka's conjecture Sketch of a missing bridge

So who is right?

Everyone!

Fhe key difference between ClassicalKin and $\mathit{Th}(\mathcal{CS})$ Hajnal Andréka's conjecture Sketch of a missing bridge

So who is right?

Everyone!

How is that possible?

The key difference between ClassicalKin and *Th(CS)* Hajnal Andréka's conjecture Sketch of a missing bridge

So who is right?

Everyone!

How is that possible?

 $\mathit{Th}(\mathcal{RS}) \neq \mathsf{SpecRel}$ and $\mathit{Th}(\mathcal{CS}) \neq \mathsf{ClassicalKin}$

The key difference between ClassicalKin and $\mathit{Th}(\mathcal{CS})$ Hajnal Andréka's conjecture Sketch of a missing bridge

So who is right?

Everyone!

How is that possible?

$$\mathit{Th}(\mathcal{RS}) \neq \mathsf{SpecRel}$$
 and $\mathit{Th}(\mathcal{CS}) \neq \mathsf{ClassicalKin}$

Yes, but... Shouldn't they be roughly/basically the same?

So who is right?

Everyone!

How is that possible?

$$Th(\mathcal{RS}) \neq SpecRel \text{ and } Th(\mathcal{CS}) \neq ClassicalKin}$$

Yes, but... Shouldn't they be roughly/basically the same?

Right, let's dig deeper!

Main differences between Th(RS) and SpecRel:

- the language of SpecRel is more complex
- ullet \mathcal{RS} is scale-free
- SpecRel is not complete

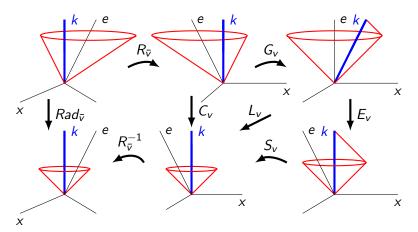
Main differences between Th(RS) and SpecRel:

- the language of SpecRel is more complex
- \mathcal{RS} is scale-free
- SpecRel is not complete

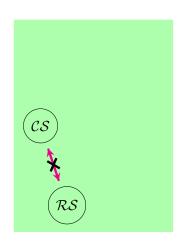
Similar differences between Th(CS) and ClassicalKin:

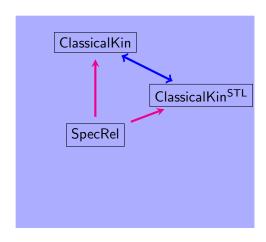
- the language of ClassicalKin is more complex
- ullet \mathcal{CS} is scale-free and ...
- ClassicalKin is not complete

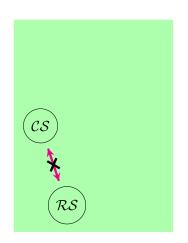
The key difference

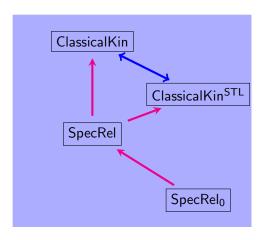


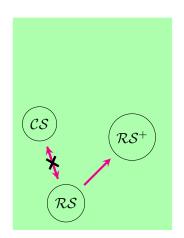
• There are light signals (of finite speed) in ClassicalKin.

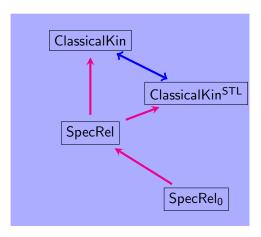








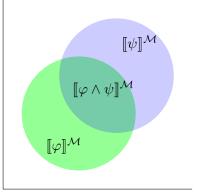




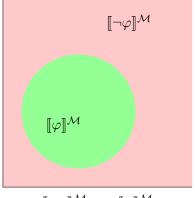
$$\mathcal{CS}^{ imes} = \left\langle \mathbb{R}^{4}, \mathsf{col}^{\infty}, \mathsf{col}^{\lambda} \right
angle$$

The **meaning** $[\![\varphi]\!]^{\mathcal{M}}$ of formula φ in model \mathcal{M} is the set of sequences from \mathcal{M} satisfying φ , i.e.

$$\llbracket \varphi \rrbracket^{\mathcal{M}} = \{ \bar{\mathbf{a}} \in \mathbf{M}^{\omega} : \mathcal{M} \models \varphi[\bar{\mathbf{a}}] \}.$$

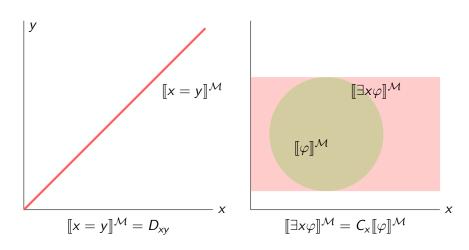


$$\llbracket \varphi \wedge \psi \rrbracket^{\mathcal{M}} = \llbracket \varphi \rrbracket^{\mathcal{M}} \cap \llbracket \psi \rrbracket^{\mathcal{M}}$$



$$\llbracket \neg \varphi \rrbracket^{\mathcal{M}} = - \llbracket \varphi \rrbracket^{\mathcal{M}}$$

The **concept algebra** $CA(\mathcal{M})$ of model \mathcal{M} is a natural algebra of meanings of formulas in \mathcal{M} .



$$\mathcal{CS}^{ imes} = \left\langle \mathbb{R}^{4}, \mathsf{col}^{\infty}, \mathsf{col}^{\lambda} \right
angle$$

$$\mathcal{CS}^{ imes} = \left\langle \mathbb{R}^4, \mathsf{col}^\infty, \mathsf{col}^\lambda \right
angle$$

 \mathcal{RS} is definitionally equivalent to $\langle \mathbb{R}^4, \operatorname{col}^{\lambda} \rangle$. So the concept algebra $\operatorname{CA}(\mathcal{RS})$ is (isomorphic to) a subalgebra of $\operatorname{CA}(\mathcal{CS}^{\times})$.

$$\mathcal{CS}^{ imes} = \left\langle \mathbb{R}^{4}, \mathsf{col}^{\infty}, \mathsf{col}^{\lambda} \right
angle$$

 \mathcal{RS} is definitionally equivalent to $\langle \mathbb{R}^4, \operatorname{col}^{\lambda} \rangle$. So the concept algebra $\operatorname{CA}(\mathcal{RS})$ is (isomorphic to) a subalgebra of $\operatorname{CA}(\mathcal{CS}^{\times})$.

Conjecture of Hajnal Andréka, 2017

Every concept from $CA(\mathcal{CS}^{\times})$ which is not already in the subalgebra $CA(\mathcal{RS})$ generates together with $CA(\mathcal{RS})$ the whole concept algebra $CA(\mathcal{CS}^{\times})$.

The key difference between ClassicalKin and Th(CS) Hajnal Andréka's conjecture Sketch of a missing bridge

James Ax (1978) \rightsquigarrow SigTh (a **Sig**naling **Th**eory of special relativity)

~~

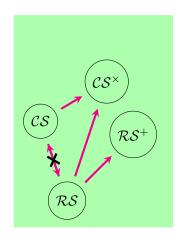
a particle sending out a singal

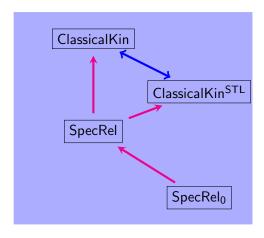
a particle receiving a singal

Theorem (Andréka–Németi, 2014)

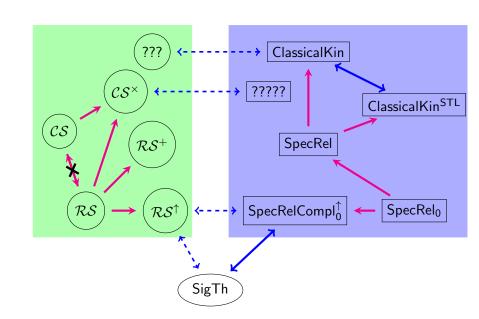
SigTh is definitionally equivalent to SpecRelCompl₀.

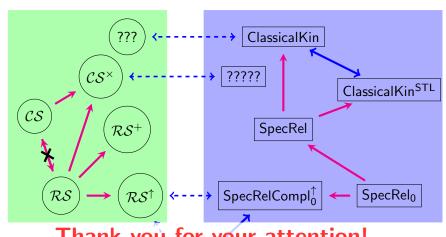
The key difference between ClassicalKin and Th(CS) Hajnal Andréka's conjecture Sketch of a missing bridge





The key difference between ClassicalKin and Th(CS) Hajnal Andréka's conjecture Sketch of a missing bridge





Thank you for your attention!

