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» Roughly 10 years ago
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undecidable questions such as the Halting Problem and the consistency of set theory.

proof of the theorem "No inertial observer can travel faster than light™.

I SpecRel.thy (% ONEDRIVE%\Desktop\GenRel2020.Final\SR--No_FTL_observers\)
B
b siltheorem noFTLObserver:

53| assumes iobm: "I0b m"
531 and iobk: "IOb k"

54/ and mke: "m sees k at e"

551 and mkf: "m sees k at "

s6) and enotf: "e # f"
| s7ishows "space2 e f < (cm* cm) * time2 e f"
i ssproof - (* by reductio *)

59

60| (* Step 1: Suppose k is going FTL from mj
boe1){
62| assume converse: "space2 e f > (cm *
63
64
65| (* Step 2: Consider the m-lightcone at e
66 define eCone where "eCone = mkCone e (
671 have e_on_econe: "onCone e eCone" by (

71 (* Step 3: There is a tangent plane for
72 defined using some point g on the tan

740 have e is vertex: "e = vertex eCone" b
75 have cm_is slope: “"c m = slope eCone"
b 76 hence outside: "outsideCone f eCone"

77 by (metis (lifting) e is vertex cm_ 1

Using Isabelle to verify special relativity, with application to hypercon

in Budapest have spent several years developing versions of relativity theory (special, general, and other
variants) based wholly on first order logic, and have argued in favour of the physical decidability, via exploitation of cosmological phenomena, of formally

The Hungarian theories are very extensive, and their associated proofs are intuitively very satisfying, but this brings its own risks since intuition can
sometimes be misleading. As part of a joint project, researchers at Sheffield have recently started generating rigorous machine-verified versions of the tO the
Hungarian proofs, so as to demanstrate the soundness of their work. In this paper, we explain the background to the project and demonstrate an Isabelle

Many thanks

Royal Society
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This approach to physical theories and physical computability has several pay-offs: (a) we can be certain our intuition hasn't led us astray (or if it has, we
can identify where this has happened); (b) we can identify which axioms are specifically required in the proof of each thecrem and to what extent those
axioms can be weakened (the fewer assumptions we make up-front, the stronger the results); and (c) we can identify whether new formal proof
techniques and tactics are needed when tackling physical as opposed to mathematical theories.

Comments 14 pages, reformatted with minor corrections

Subjects Logic in Computer Science (cs.LO): General Relativity and Quantum Cosmology (gr-qc)
AGM classes:  F
Journal reference: Joural of Automated Reasoning, 52 4 (2014), 361-378
Rl 10.1007/510817-013-8292-7

1.2

for the funding

Outline the nature and purpose of your research project Including a description of the experimental methods and
techniques you will be using (max 4000 characters Including spaces)
This proposal concerns the initial stages of the following longer-term strategy for investigating the nature of computation
in a relativistic setting.

STRATEGY

[1]Implement the (already developad) many-sorted firseorder logic theories of special and general relativity
(SpecRel/GenRel) in @ mechanised theorem prover. We propose using Isabelle/HOL, one of the best developed and
documented systems. A particular advantage is that external automatic theorem provers can be called, thereby enabling
parts of the formalisation to be proved fully automatically.

[2] Having implemented the relativistic theories, a basic theory of mobile computation in spacetime should be developed.
We propose using membrane system representations, since these include a natural representation of spatial separation
and most of the models are Turing complete.

[3] Merge these to generate machine verifiable consistent theories of relativistic computation, and use them te prove the
feasibility of hypercomputation in selectad (realistic) models of general relativity.

At this inicial stage we will

[WP1] Implement axiomatizations of general relativity in first order logic in Isabelle. Our particular focus will be the
many-sorted thearies SpecRel, AccRel and GenRel [AMNSZ], which fully encapsulate the basic theories of special relativity,
relativity with accelerated observers, and general relativity, in the sense that the logical models corresponding to these
theories are precisely the Lorentzian manifolds posited by theoretical physicists. Suitable background theories - e.g.
ordered Euclidean fields {in the algebraic sense) - will also be encoded and published in a repository.

IWP2] Review the very rich literature of membrane systems [PRS] to identify variants of the model that are sultable for our
purposes. Mobility appears in varlous forms, and allows us to model the movement of computational devices. We wil
define suitable geometric properties for these variants, o as to model the effects of cosmological curvature identified in
WP

[WP3] Study the computational power and complexity aspects of the model defined in WP2. Various topologies and
geometries will be considered.

[WP4] Develop a detailed case study. We will select an uncomputable problem P - for example, the Halting Problem, or the
consistency of set theory - and attempt to prove and machine-verify the following claim: in simpler relativistic settings, P
remains uncomputable, but when more complicated (and more relativistic) spacetimes are considered, P can be solved.
This will confirm that the computational power of a device depends on the physical seting in which it finds itself.

THE TEAM

Andréka, Madarasz, Németi and Székely are experts in the [ogics Involved, and developed the underlying theories on which
the project is based. Stannett has worked with the Budapest group, and is well-versed in their logics; he is, moreover, an
expert on hypercomputation theory. Struth and Foster have expertise in interactive and automatic theerem provers, and
Struth has a background in theoretical physics. Gheorghe is an expert in membrane computing and other relevant
computational models.

The nominated PhD students all work in topics directly related to the project, and will receive appropriate further training

Because of their complementary skills, the participants are idzally placed to pursue this project.




LRB'20

» Main sources for current work

Relativity theory and definability theory of

mathematical logic

Judit Madarasz

Rényi Institute of Mathematics, Budapest

joint research with H. Andréka, |. Németi, G. Székely

Presented at
Workshop: The Formal
Semantics of Theories:

Conceptual and Historical
Foundations, University of
Salzburg, 7-8 June 2018



» Current position
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New GenRel Proof
e 16 files
e 6000 lines so far

Tidied-Up SpecRel Proof
* 4files
e 1500 lines

SpecRel Proof Files Lines
SpaceTime

SomeFunc

Axioms

SpecRel

839

26
267
363

GenRel Proof Files
Sorts

Points

Functions

Norms

Vectors

Matrices
WorldView

Affine

Sublemma4
WorldLine

GenRel
Sublemma3
MainLemma
PresentationLemma
Cones

GenRelNoFTL (incomplete)

Lines

487
639
262
238
164

51
40

1345
132
429
132
435
709
270
416
296
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£ Isabelle X
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Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language and provides tools for
proving those formulas in a logical calculus. Isabelle was originally developed at the University of Cambridge and Technische
Universitat Manchen, but now includes numerous contributions from institutions and individuals worldwide. See the |sabelle overview

for a brief introduction.

Download for

Windows "

mike’s laptop
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P What an Isabelle proof looks like (roughly)

| 5o
51

62

I" SpecRel.thy (% ONEDRIVE%\Desktop\GenRel2020.Final\SR--No_FTL_observers\)

theorem noFTLObserver:

assumes iobm: "IOb m"

and iobk: "IOb k"

and mke: "m sees k at e"

and mkf: "m sees k at f"

and enotf: "e £ f"
shows "space2 e T < (cm * ¢ m) * time2 e f"
proof - (* by reductio *)

(* Step 1: Suppose k is going FTL from m's viewpoint. *)
assume converse: "space2 e T > (cm * ¢ m) * time2 e f"
(* Step 2: Consider the m-lightcone at e *)

define eCone where "eCone = mkCone e (c m)"
have e on econe: "onCone e eCone" by (simp add: eCone def)

(* Step 3: There is a tangent plane for eCone containing both e and f,
defined using some point g on the tangent line *)

have e is vertex: "e = vertex eCone" by (simp add: eCone_def)
have cm_is slope: "c m = slope eCone" by (simp add: eCone_def)
hence outside: "outsideCone f eCone"
by (metis (lifting) e is vertex cm is slope converse outsideCone.simps)

LRB'20
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Define all of your terms (takes
ages)

Prove basic mathematical
statements as necessary

Name the result
State the assumptions
State the result

Write out the proof
(help is available)

Remember to include comments
for humans



» Some stuff can be inherited from existing theories

[ Sorts.thy (%ONEDRIVEYs\Desktop\GenRel2020.Final\)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
= 34
35
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(* A linordered field is a field with a linear (total) order
INHERITED SYNTAX:

linorder: <, <, >, >

field: a * b, a / b, inverse a
a+b, a-»b, -a
0, 1

*)

(*
The set of quantities is assumed to be an ordered field. We may
sometimes need to assume that the field is also Euclidean, 1ie
square roots exists, but this is not a general requirement so it
will be added as a separate axiom class later if it is needed.

*)

class Quantities = linordered field

begin

No need to define
what an ordered
field is, as lots of
stuff has already
been proven about
them



» And other stuff you may need to define yourself

abbreviation affine :: "('a Point = 'a Point) = bool"
where "affine A= 3 L T . (linear L) A (translation T) A (A =T o L)"

abbreviation isLinearPart :: "('a Point = 'a Point) = ('a Point = 'a Point) = bool"
where "islLinearPart A L = (affine A) A (linear L) A
(3 T. (translation T A A =T o L))"

abbreviation isTranslationPart :: "('a Point = 'a Point) = ('a Point = 'a Point) = bool"
where "isTranslationPart A T = (affine A) A (translation T) A
(3 L. (linear L A A =T o L))"

abbreviation affInvertible :: "('a Point = 'a Point) = bool"
where "affInvertible A=V q . (3 p . (Ap=q) A (VY. AxX=q — X =p))"

(* affine approximation *)
abbreviation affineApprox :: "('a Point = 'a Point) =
(‘a Point = 'a Point => bool) =
‘a Point = bool"
where "affineApprox A f x = (isFunction f) A

LRB'20



» Some proofs are very simple

[7] Sorts.thy (%ONEDRIVEY\Desktop\GenRel2020.Final\)

| 237
3 238
- 239
249
J241
- 242
243
- 244
- 245
246

abbreviation sqr :: "'a = ‘'a"

where "sqr x = x*x"
abbreviation hasRoot :: "'a = bool"

where "hasRoot x =3 r . x = sqr r"
abbreviation isNonNegRoot :: "'a = 'a = bool"

where "isNonNegRoot x r = (r > 0) A (x = sqr r)"

1 2471abbreviation hasUniqueRoot :: "'a = bool"
| 248 where "hasUnigueRoof x = 1 r isNonNegRoot x r"
249
(::::::::}2591emma lemAbsIsRootOfSquare: "isNonNegRoot (sqr x) (abs x)"
251 by simp

255
253
254
J 255

256
F 257
- 258
259
260
261
262
263
]‘] 264
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lemma lemSqrt:
assumes "hasRoot x"
shows "hasUniqueRoot x"
proof -
obtain r where "x = sqr r" using assms(1l) by auto
define rt where "rt = (if (r > 0) then r else (-r))"
hence rt: "rt > 0 A sqr rt = x" using rt def «x = sqr r» by auto

hence rtroot: "isNonNegRoot x rt" by auto

{ fix vy

In general a proof has many steps, and
you have to prove every single step in
full, no matter how trivial.

Isabelle has some basic proof methods
built in; you have to decide which one
to use at each stage, e.g. “simp” and
“auto” use basic rewrite and inference
rules to check that the claimed result
holds.



If you want some help, try invoking
’S IEdgEha mmer “sledgehammer”

[ Points.thy (%0OMEDRIVE%:\Desktop\GenRel2020.Fi
175
= 176| Lemma lemScaleAssoc: "(a ® (B ® p)) = ((a * 3) ® p)"

- 1771 sledgehammer . )

— Isabelle will ask various theorem

el provers to try finding a proof for you

Provers: cvcd 73 spass e remote_vampire - Isar proofs Try methods

Proof found...
"cvcd": Try this: by (simp add: mult assoc) (0.0 ms)
"z3": Try this: by| (simp add: local.mult.semigroup axioms semigroup.assoc) [(0.0 ms)

they can use proven results you don’t know about

Isar proof (15 ms):
proof -
have "Vf a aa ab. - semigroup f v f (f (a::'a) aa) ab = f a (f aa ab)"
by (meson semigroup.assoc)
then show ?thesis

. using local.mult.semigroup axioms by auto the proofs d/fferent systems generate
ge . .

"e": Try this: by (simp add: mult assoc) (0.0 ms) mlght be the same or d’fferent (and
(No Isar proof available.) they may not be able to find one at all)

"remote vampire": The prover gave up
"spass": Try this: by (simp add: mult assoc) (0.0 ms)

(No Isar proof available.)
LRB'20 11



» You may still need to provide detailed guidance

[ Sorts.thy (% ONEDRIVE®\Desktop\GenRel2020.Final\)

| 237
3 238
- 239
240
3241
L 242
243

I 245
246

- 248
249
3 250
P 28
252
253
254

256
I 257

259
260
261
262
263
1‘3 264

{4 V4
L o hasRoot” says
abbreviation sqr :: a = 'a
where "sqr x = x*x" a root EXiStS
abbreviation hasRoot :: "'a = bool"
where "hasRoot x = 3 r . x = sqr r" IUSE ”Obtain” to
abbreviation isNonNegRoot :: "' = bool

generate a witness

a
where "isNonNegRoot x r = (r >

abbreviation hasUniqueRoot :: "'a = bool"
where "hasUniqueRoot x = d! r . isNonNegRoot Xx

| manipulate the witness

to obtain a value | think

will have some required
properties...

lemma lemAbsIsRootOfSquare: "isNonNegRog
by simp

lemma lemSqrt:
assumes "hasRoot x"

oreog . eUmavgg ... and then guide
sty T bare ' < 3017 wsag asam(t) by avto 4 — Isabelle through a proof
hence rtroots *LsNonNeGRaot x 1" by aute - et that I'm right.
{ fix y jk—j

LRB'20 @



» Proof development process for No-FTL-GR

e Background definitions and general
ideas taken from earlier Andréka-

Németi group presentations Obvious with Hindsight

Every stage in this process
requires considerable invention and
intuition

e Additional hand-written proofs specially
provided by Judit (thank you!)

e Conversion to Isabelle mostly done by
Mike (some by Edward, thank you!)

e Gaps in proofs mostly dealt with by
Mike (liaising sometimes with
Budapest)

LRB'20



» Re-using earlier slides...

® Re||a nce on |mages AxLight™ , AxEvent™, AxSelf™, AxDiff , AxEField

e Translation into
written mathematics
not obvious

coordinate system of k coordinate system of m

LRB'20 14



» Hand-written proofs...

e Much easier to convert

e Still requires intuition to fill gaps

LRB'20
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» Line-by-line conversion...
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tod fo wows oo .
I PresentationLemma.thy (%ONEDRIVEZ6\Desktop\GenRel2020.Final\)
&% pio  glbegin
9
v 1s/class PresentationLemma = GenRel + MainLemma
., )2 111begin
- 12
i 13| (* We show that worldview transformations satisfy the requirements for lemMainLemma
14
Loul 15| lemma lemWVTImpliesFunction: "isFunction (wvtFunc k h)"
= 1¢|proof -
‘w«ti-é 17| { fix x p g
) 18 assume hyp: "wvtFunc kK h x p A wvtFunc k h x gq"
19
of 20 have "axDiff k h x" using AxDiff by blast
luven hence axdiff: "(34 r . wvtFunc k h x r)
L2 — (3 A . (affineApprox A (wvtFunc k h) x ))"
R by auto
e . . .
25 then obtain A where A: "affineApprox A (wvtFunc k h) x" using hyp by auto
[eF 26 hence "Vz. (wvtFunc k h x z) «— (z = A x)"
27 using lemAffineEqualAtBase[of "wvtFunc k h" "A" "x"]
WL g by auto
29 hence "p = A x A g = A x" using hyp by blast
30 moreover have "affine A" using A by auto
L3 ultimately have "p = g" by auto
32 }
- 331 thus ?thesis by force
- 34/qed
35

16



»Some gaps might or might not need filling

[ Cones.thy (%ONEDRIVE%\Desktop\GenRel2020.Final\)
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Last sentence of hand-written proof

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294/
295

(*
(* A point is inside (regularConeSet m x) *)
abbreviation insideCone :: "'

where "insideCone x p = (3 v ¢

a Point = 'a Point = bool"
lineVelocity (lineJdoining x p)

. sNorm2 v

(* Two points are on the same half of (regularConeSet m x) *)

abbreviation sameHalf ::
where "sameHalf x u v
(V a . ((vex) = («a )
(Va3 . ((a<1)y A (F<1) A
*)

lemma lemSameHalfUnderInvertibleAffine:

assumes "affine A A affInvertible A"
and "y = A x"
and "applyToSet (asFunc A)
nd "sameHalf x u [
ows "sameHalf y (A u) (A v)"
roof -
define u' where u': "u' = A u"
define v' where v': "v' = A v"

"'a Point = 'a Point = 'a Point = bool"

g_(uyx ) — a > 0)) A
(v + 3 = 1))

—_—

(insideCone x ((awu)

(* can be deduced from other assumptions *)
(regularConeSet x) =

regularConeSet y"

®

<

< 1)

(Bezv))))"

obtain T L where TL: "translation T A linear L A A = TolL" using assms(1l) by auto

obtain A' where A': "(affine A') A (V p q .

Ap=q« A" q=p)*

using assms(1l) lemInverseAffine[of "A"] by blast

then obtain T' L' where TL':

by blast

"translation T' A linear L' A A’

= TIOLIII

> Launchpad for entire secondary proof?

17



» What do the results mean physically?

PresentationLemma.thy (%ONEDRIVE%!\Desktop\GenRel2020.Final\)

begin

class
begin

(* We

lemma
proof

PresentationLemma = GenRel + MainLemma

show that worldview transformations satisfy the requirements for lemMainLemma *)

lemWVTImpliesFunction: "isFunction (wvtFunc k h)"

{ fix x p g

assume hyp: "wvtFunc k h x

have "axDiff k h
hence axdiff: "(3 r .

A wvtFunc k h x

" using AxDiff by blast
wvtFunc k h x r)

— (3 A . (affineApprox A (wvtFunc k h) x ))"
by auto
then obtain A where A: "affineApprox A (wvtFunc k h) x" using hyp by auto
hence "¥z. (wvtFunc k h x z) «— (z = A x)"
using lemAffineEqualAtBase[of "wvtFunc k h" "A" "x"]
by auto
hence "p = x A g = A x" using hyp by blast

moreover have "affine A
ultimately have =

}

using A by auto
1" by auto

thus ?thesis by force

qed

LRB'20

e |s it reasonable that worldview

relations should be functions?

Gravitational Lens G2237+0305

This Photo by Unknown Author is licensed under CC BY-SA
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http://astronomyonline.org/Cosmology/DarkMatterProject.asp
https://creativecommons.org/licenses/by-sa/3.0/

P Lessons learned

e Doing this stuff is challenging (= fun)
e Started slowly, but speeding up as we learn to “think like the machine”

e Proof conversion requires the programmer to have an intuitive grasp of the subject
matter

— should aim to help the author prove things directly in the system rather than need help
from a translator

e There are lots of basic mathematical assumptions built into proofs

— need to equip the theorem prover to degree-level standard

LRB'20



» And finally...

e QOriginal goal still seems achievable

— unfunded, will take many years to complete)

e New added focus

LRB'20

— examine the difficulties involves in converting “mathematical physics” proofs into
machine-verifiable format

— develop software support to make this easier

— generate new automated proof systems targeted at physicists (link up with Bringsjord et
al.)



