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Main Talking Point

By suitably modifying the standard Belnappian theory of Branching Spacetimes, one
can naturally endow the resulting models with appropriate topological, differentiable
and Lorentzian structures.

This procedure can be generalised so as to define a new class of branching
spacetimes known as Lorentzian Branching Spacetimes.

Branching Spacetimes = Branching + Spacetimes
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Section 1

Preliminaries:

Branching Spacetimes 6= Branching + Spacetimes

4



Branching Temporal Models

Branching is enabled by globally relaxing a property of the temporal ordering ≤.
Histories are then defined to be maximal subsets retaining this globally-relaxed
property.
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Constructing a Branching Model

There are two main ways to turn a linear temporal model into a branching one.

p p

1. Glue on another future at p.

2. Take two copies of the model, and glue everywhere outside of the future of p.
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Minkowski Spacetime

t

x

t

xy

A vector space Rn, together with a pseudometric η. The metric η acts on elements of
Rn by:

η(x , y) = −x0y0 + x1y1 + ...+ xn−1yn−1

The minus sign is needed to ensure that the speed of light is constant for all observers.
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Causal Structure of Minkowski Spacetime

We can use lightcones to define a binary relation ≤η that encodes the causal structure
of Mn, by saying that x ≤η y iff y lies in the future lightcone of x .

Lemma (Causal Properties of Mn)
The ordering ≤η is a dense, directed partial order in which each upper-bounded chain
has a supremum, and each lower-bounded chain has an infimum.
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What is a Spacetime?

Definition
A spacetime is a connected smooth manifold M together with a Lorentzian metric g
and a time-orientation.

Geometric

Differentiable

Topological

Set Theoretic

(Logical)

(M, τ,A, g)

(M, τ,A)

(M, τ)
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The Theory BST92

The primitives of BST92 are a set W and a binary relation ≤.

BST1 The tuple (W ,≤) is a dense partial order with no maxima.

Observe that W is not required to be directed. Histories of W are then defined to be
maximally directed subsets of W .

BST2 If C is a lower-bounded chain of W then C has an infimum in W , which we
denote by inf (C).

BST3 If C is an upper-bounded chain of W then C has a suprema in every history h
such that C ⊆ h. We denote such a supremum by suph(C).
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The Prior Choice Principle

The last axiom deals with the branching structure of BSTs.

PCP (Prior Choice Principle) If C is a chain of W such that C ⊆ h1\h2, then there is
some element x of W such that x ≤ C and x is maximal in h1 ∩ h2.

Such an x is called a choice point for h1 and h2, and is the last point contained within
the overlap h1 ∩ h2.

x

h1\h2

h1 ∩ h2

x

h2\h1

h1 ∩ h2
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Minkowskian Branching Spacetimes

Definition
A BST92 model (W ,≤) is called a Minkowskian BST iff each history of W is
order-isomorphic to some fixed (Mn,≤η).

t

x

The Minkowski spacetime M2 The simple MBST M2
2
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Branching Spacetimes 6= Branching + Spacetimes

There are two obvious limitations of BST92 models:

(L1) Models of BST92 only axiomatise the causal structure of spacetimes, so are too
coarse to be interpreted as models of relativity.

(L2) BST92 can only deal with special-relativistic branching, and does not treat the
models of general relativity adequately.
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The State of the Art

Structure Minkowski Spacetime

Standard Branching under BST92

Underlying Set Mn, i.e. Rn MBSTs
Causal Order ≤η Ordering on MBSTs
Topology Standard topology Bartha topology*
Smooth Structure Standard structure ??
Metric Structure η ??

*The Bartha topology τW
B has been proposed as a natural topological extension of the

order-theoretic models (W ,≤).
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Section 2

Our Approach:

Modify BST92 and construct some new models
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Our Approach

We remove the limitations L1 and L2 by:

1. Developing the mathematical machinery required to construct Minkowskian BSTs
at the level of (Mn, η) (as opposed to the standard construction, which is at the
level of the causal structure (Mn,≤η).

2. Using this same machinery to form BSTs from arbitrary spacetimes (M, g).

This is done using a modified theory BST92*, and opting for a type-2 construction of its
MBSTs.
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Models of BST92*

BST92* is mostly the same as BST92, except that it uses choice pairs instead of
choice points. The elements of a choice pair are now distinct, ≤-minimal elements of
the differences h1\h2 and h2\h1.

x

h1\h2

h1 ∩ h2

x

h2\h1

h1 ∩ h2

BST92 Model

x1

h1\h2

h1 ∩ h2

x2

h2\h1

h1 ∩ h2

BST92* Model
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An Example: Constructing M2
2

We can construct our simple MBST using this technique.

Quotienting

under ∼

⊔2
i=1 M2

i
M2

2

Here (x , i) ∼ (y , j) iff x = y and x /∈ J+(0).
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Adjunction Spaces in Topology

The idea of quotienting a disjoint union is a well-known construction in topology, known
as an adjunction space.

A f (A)

f

X Y

The information on where to glue the topological spaces X and Y together is
formalised using a closed subspace A of X and a continuous map f : A→ Y . The
adjunction space X ∪f Y is formed by quotienting the disjoint union X t Y under the
relation that identifies every (a, 1) with (f (a), 2).
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Diagram for an Adjunction Space

The configuration for an adjunction space can be represented as:

A X

Y X t Y

X ∪f Y

ιA

f ϕ1

φX

ϕ2

φY

q

A X

Y X ∪f Y

ιA

f φX

φY

Here the ϕi are the canonical injections into the disjoint union, and q is the quotient
map associated to the identification of A and f (A). The maps φX and φY are called
canonical maps, and are defined as the compositions φX := ϕ1 ◦ q and φY := ϕ2 ◦ q.
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Adjoined Spacetimes

Theorem (Main Result)
Let X and Y be spacetimes of the same dimension, such that:

1. each A is an open sub-spacetime of X, and

2. the map f : A→ Y is a time-orientation-preserving isometric embedding.

Then the adjunction space X ∪f Y can be equipped with a Lorentzian metric g̃ and a
time-orientation T̃ , turning it into a spacetime. Moreover, the canonical maps φX and
φY act as open isometric embeddings that preserve time-orientation.

Key Idea: If we assert that f preserves all of the structure of A, then the gluing
procedure does not destroy any information.
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Sketch of the Proof

EA EX

EY EX∪F EY

A X

Y X ∪f Y

F

f φX

φY
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Section 3

Key Results:

Branching Spacetimes = Branching + Spacetimes
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Expressing MBSTs as Adjoined Spacetimes

We can construct the MBST M2
2 by taking:

• X and Y equal to (Mn, η),

• the subspace A to be equal to Mn\J+(0), and

• each f : A→ Y is the inclusion map.

This data meets the criteria of the previous theorem, so we can conclude that the
adjunction system X ∪f Y is a smooth manifold possessing a Lorentzian metric η̃ and a
time orientation T̃ , that is, X ∪f Y is a (non-Hausdorff) spacetime!
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Defining Lorentzian BSTs

Now let (M, g) be any spacetime. We take:

• X and Y equal to (M, g),

• the subspace A to be equal to M\Cl(J+(p)), and

• each f : A→ Y is the inclusion map.

Again this data meets the criteria of the previous theorem, so we get the following
picture emerge:
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Causal Properties of LBSTs

Theorem
Let (M, g) be a Hausdorff spacetime, and MC a Lorentzian BST built from M.

1. If M is causal, then so is MC .

2. If M has a global time function, then so does MC .

3. If M has compact causal diamonds, then so does MC .
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Back to the Limitations

(L1) Models of BST92 only axiomatise the causal structure of spacetimes, so are too
coarse to be interpreted as models of relativity.

(L2) BST92 can only deal with special-relativistic branching, and does not treat the
models of general relativity adequately.

Minkowskian BST Lorentzian BST
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The End
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The Bartha Topology on BST92 Models

The Bartha topology τW
B on a BST92 model (W ,≤) is defined as follows.

Definition
A subset U of W is open in the Bartha topology iff for all x in U and all maximal
≤-chains C passing through x , there are elements c1 and c2 such that x ∈ dc1c2 ⊂ U.

U

C

c1

c2

x

dc1c2
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Comparison of Bartha Topologies

As it turns out, the Bartha topology on BST92* models is much better behaved.

Properties BST92 BST92*

Histories open No† Yes
τh

B ⊆ τ
W
B No† Yes

τh
B = τh

S Unknown Yes
Hausdorff No† No†
Locally-Euclidean No∗ Yes (in MBSTs)
Connected Yes Yes
Path-connected Unknown Yes
Natural Extension Yes Yes

(†) In general no, but yes iff W is a single-historied model.
(∗) Yes iff W is equal to (Mn,≤η).
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