

Concept Algebras and Conceptual Distance

Mohamed Khaled Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul

CONCEPT ALGEBRAS

A model \mathfrak{M} is a non-empty set M together with some costants, relations and operations on M.

Example Suppose that (G, \cdot, e) is a group, then:

Example

Suppose that (G, \cdot, e) is a group, then:

• "The center Z(G) of G" is a concept.

Example

Suppose that (G, \cdot, e) is a group, then:

• "The center Z(G) of G" is a concept.

 $\forall y \ (x \cdot y = y \cdot x)$

Example

Suppose that (G, \cdot, e) is a group, then:

• "The center Z(G) of G" is a concept.

 $\forall y \ (x \cdot y = y \cdot x)$

• "All elements of finite order in G" is not a concept.

Example

Suppose that (G, \cdot, e) is a group, then:

- "The center Z(G) of G" is a concept.
- "All elements of finite order in G" is not a concept.

 $\forall y \ (x \cdot y = y \cdot x)$ $\exists n \ (x^n = e)$

• We assume a fixed enumeration v_0, v_1, \ldots of the individual variables.

• We assume a fixed enumeration v_0, v_1, \ldots of the individual variables.

$$\varphi = \varphi(\mathbf{v}_{i_1},\ldots,\mathbf{v}_{i_n})$$

- We assume a fixed enumeration v_0, v_1, \ldots of the individual variables.
- Define the meaning of $\varphi = \varphi(v_{i_1}, \ldots, v_{i_n})$ in \mathfrak{M} as follows:

- We assume a fixed enumeration v_0, v_1, \ldots of the individual variables.
- Define the meaning of $\varphi = \varphi(v_{i_1}, \ldots, v_{i_n})$ in \mathfrak{M} as follows:

$$[\varphi]^{\mathfrak{M}} \stackrel{\text{\tiny def}}{=} \big\{ (a_0, a_1, \ldots) \in M^{\omega} : \varphi(a_{i_1}, \ldots, a_{i_n}) \text{ is true in } \mathfrak{M} \big\}$$

- We assume a fixed enumeration v_0, v_1, \ldots of the individual variables.
- Define the meaning of $\varphi = \varphi(v_{i_1}, \ldots, v_{i_n})$ in \mathfrak{M} as follows:

$$[\varphi]^{\mathfrak{M}} \stackrel{\text{\tiny def}}{=} \big\{ (a_0, a_1, \ldots) \in M^{\omega} : \varphi(a_{i_1}, \ldots, a_{i_n}) \text{ is true in } \mathfrak{M} \big\} \subseteq M^{\omega}$$

- We assume a fixed enumeration v_0, v_1, \ldots of the individual variables.
- Define the meaning of $\varphi = \varphi(v_{i_1}, \ldots, v_{i_n})$ in \mathfrak{M} as follows:

$$[\varphi]^{\mathfrak{M}} \stackrel{\text{\tiny def}}{=} \big\{ (a_0, a_1, \ldots) \in M^{\omega} : \varphi(a_{i_1}, \ldots, a_{i_n}) \text{ is true in } \mathfrak{M} \big\} \subseteq M^{\omega}$$

• $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \ \varphi\right]^{\mathfrak{M}} = \left\{ \overline{a} \in M^{\omega} : \left(\exists \overline{a}' \in [\varphi]^{\mathfrak{M}}\right) \ \overline{a} \equiv_i \overline{a}' \right\}$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \varphi\right]^{\mathfrak{M}} = \left\{ \bar{a} \in M^{\omega} : \left(\exists \bar{a}' \in [\varphi]^{\mathfrak{M}} \right) \ \bar{a} \equiv_i \bar{a}' \right\}$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \ \varphi\right]^{\mathfrak{M}} = \left\{ \overline{a} \in M^{\omega} : \left(\exists \overline{a}' \in [\varphi]^{\mathfrak{M}}\right) \ \overline{a} \equiv_i \overline{a}' \right\}$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \ \varphi\right]^{\mathfrak{M}} = \left\{ \overline{a} \in M^{\omega} : \left(\exists \overline{a}' \in [\varphi]^{\mathfrak{M}}\right) \ \overline{a} \equiv_i \overline{a}' \right\} \stackrel{\text{def}}{=} C_i[\varphi]^{\mathfrak{M}}$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \; \varphi\right]^{\mathfrak{M}} = \left\{ \bar{a} \in M^{\omega} : \left(\exists \bar{a}' \in [\varphi]^{\mathfrak{M}}\right) \; \; \bar{a} \equiv_i \bar{a}' \right\} \stackrel{\text{def}}{=} C_i[\varphi]^{\mathfrak{M}}$

•
$$[v_i = v_j]^{\mathfrak{M}} = \{ \overline{a} \in M^{\omega} : a_i = a_j \}$$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \; \varphi\right]^{\mathfrak{M}} = \left\{ \bar{a} \in M^{\omega} : \left(\exists \bar{a}' \in [\varphi]^{\mathfrak{M}}\right) \; \; \bar{a} \equiv_i \bar{a}' \right\} \stackrel{\text{def}}{=} C_i[\varphi]^{\mathfrak{M}}$

•
$$[v_i = v_j]^{\mathfrak{M}} = \{ \overline{a} \in M^{\omega} : a_i = a_j \}$$

- $[\varphi \lor \psi]^{\mathfrak{M}} = [\varphi]^{\mathfrak{M}} \cup [\psi]^{\mathfrak{M}}$
- $[\neg \varphi]^{\mathfrak{M}} = M^{\omega} \sim [\varphi]^{\mathfrak{M}}$
- $\left[\exists v_i \; \varphi\right]^{\mathfrak{M}} = \left\{ \bar{a} \in M^{\omega} : \left(\exists \bar{a}' \in [\varphi]^{\mathfrak{M}}\right) \; \; \bar{a} \equiv_i \bar{a}' \right\} \stackrel{\text{def}}{=} C_i[\varphi]^{\mathfrak{M}}$

•
$$[v_i = v_j]^{\mathfrak{M}} = \{ \overline{a} \in M^{\omega} : a_i = a_j \} \stackrel{\text{def}}{=} D_{ij}$$

The concept algebra of ${\mathfrak M}$ is:

 $\mathfrak{Cs}(\mathfrak{M}) \stackrel{\mathsf{def}}{=} \langle \mathit{Cs}(\mathfrak{M}), \cup, \sim, \mathit{C}_i, \mathit{D}_{ij} \rangle_{i,j < \omega}.$

The concept algebra of ${\mathfrak M}$ is:

 $\mathfrak{Cs}(\mathfrak{M}) \stackrel{\text{\tiny def}}{=} \langle Cs(\mathfrak{M}), \cup, \sim, C_i, D_{ij} \rangle_{i,j < \omega}.$

The concept algebra of ${\mathfrak M}$ is:

$$\mathfrak{Cs}(\mathfrak{M}) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \langle \mathit{Cs}(\mathfrak{M}), \cup, \sim, \mathit{C}_i, \mathit{D}_{ij} \rangle_{i,j < \omega}$$

The concept algebra of ${\mathfrak M}$ is:

$$\mathfrak{Cs}(\mathfrak{M}) \stackrel{\mathsf{\tiny def}}{=} \langle \mathit{Cs}(\mathfrak{M}), \cup, \sim, \mathit{C}_i, \mathit{D}_{ij}
angle_{i,j < \omega}$$

Red; Red; Edge; Equal

Red; Red; Edge; Equal

A B D C

Red; Red; Edge; Equal

 $\mathfrak{Mr}_n\mathfrak{Cs}(G)$

 $\mathfrak{Nr}_1\mathfrak{Cs}(G)\subseteq\cdots\subseteq\mathfrak{Nr}_n\mathfrak{Cs}(G)\subseteq\cdots$

 $\mathfrak{Nr}_n\mathfrak{Cs}(G)$ is atomic

 $\mathfrak{Mr}_1\mathfrak{Cs}(G)\subseteq\cdots\subseteq\mathfrak{Mr}_n\mathfrak{Cs}(G)\subseteq\cdots$

Red; Red; Edge; Equal

 $\mathfrak{Nr}_n\mathfrak{Cs}(G)$ is atomic

 $\mathfrak{Nr}_1\mathfrak{Cs}(G)\subseteq\cdots\subseteq\mathfrak{Nr}_n\mathfrak{Cs}(G)\subseteq\cdots$

Red; Red; Edge; Equal

 $\mathfrak{Nr}_n\mathfrak{Cs}(G)$ is atomic

 $\mathfrak{Nr}_1\mathfrak{Cs}(G)\subseteq\cdots\subseteq\mathfrak{Nr}_n\mathfrak{Cs}(G)\subseteq\cdots$

 $(c_0,\ldots,c_i,\ldots,c_j,\ldots,c_{n-1},--)$

 $\mathfrak{Nr}_n\mathfrak{Cs}(G)$ is atomic

 $\mathfrak{Nr}_1\mathfrak{Cs}(G)\subseteq\cdots\subseteq\mathfrak{Nr}_n\mathfrak{Cs}(G)\subseteq\cdots$

$$(c_0,\ldots,c_i,\ldots,c_j,\ldots,c_{n-1},--)$$

 $c_i c_j$ edge? $c_i = c_j$?

Red; Red; No Edge; Not Equal

Red; Red; No Edge; Not Equal

Blue; Red; Edge; Not Equal

Blue; Red; Edge; Not Equal

 $\mathfrak{Nr}_2\mathfrak{Cs}(G)$

NETWORK OF CS ...

$\mathfrak{M} \rightleftharpoons \mathfrak{N} \iff \mathfrak{Cs}(\mathfrak{M}) \cong \mathfrak{Cs}(\mathfrak{M})$

Simple graph H

 $\mathfrak{Nr}_2\mathfrak{Cs}(G)$

 $\mathfrak{Nr}_2\mathfrak{Cs}(H)$

 $\mathfrak{Cs}(\mathfrak{M})$ is a large subalgebra of $\mathfrak{Cs}(\mathfrak{N})$:

$$\mathfrak{Cs}(\mathfrak{M}) o \mathfrak{Cs}(\mathfrak{N}) \iff \exists a \in \mathfrak{Cs}(\mathfrak{N}) ext{ such that } \langle \mathit{Cs}(\mathfrak{M}) \cup \{a\}
angle = \mathfrak{Cs}(\mathfrak{N})$$

 ${\mathfrak N}$ is a one concept-extension of ${\mathfrak M}:$

 $\mathfrak{M} \rightsquigarrow \mathfrak{N} \iff M = N, \ \mathcal{L}(\mathfrak{N}) = \mathcal{L}(\mathfrak{M}) \cup \{R\} \text{ and } \mathfrak{M} \sqsubseteq \mathfrak{N}$

 ${\mathfrak N}$ is a one concept-extension of ${\mathfrak M}:$

 $\mathfrak{M} \rightsquigarrow \mathfrak{N} \iff M = N, \ \mathcal{L}(\mathfrak{N}) = \mathcal{L}(\mathfrak{M}) \cup \{R\} \text{ and } \mathfrak{M} \sqsubseteq \mathfrak{N}$

 ${\mathfrak N}$ is a one concept-extension of ${\mathfrak M}:$

 $\mathfrak{M} \rightsquigarrow \mathfrak{N} \iff M = N, \ \mathcal{L}(\mathfrak{N}) = \mathcal{L}(\mathfrak{M}) \cup \{R\} \text{ and } \mathfrak{M} \sqsubseteq \mathfrak{N}$

$\exists \ \mathfrak{N}' \text{ such that } \mathfrak{M} \rightsquigarrow \mathfrak{N}' \rightleftarrows \mathfrak{N} \iff \exists \ \mathfrak{N}' \text{ such that } \mathfrak{Cs}(\mathfrak{M}) \rightharpoonup \mathfrak{Cs}(\mathfrak{N}') \cong \mathfrak{Cs}(\mathfrak{N})$

Simple graph H

Simple graph H

 $\exists \ \mathfrak{N}' \text{ such that } G \rightsquigarrow \mathfrak{N}' \rightleftharpoons H$

Simple graph H

 $\exists \mathfrak{N}'$ such that $G \rightsquigarrow \mathfrak{N}' \rightleftharpoons H$

 $\mathfrak{Nr}_2\mathfrak{Cs}(H)$

 $\mathfrak{Nr}_2\mathfrak{Cs}(G)$

 $\mathfrak{Mr}_2\mathfrak{Cs}(H)$

 $\mathfrak{Nr}_2\mathfrak{Cs}(G)$

 $\mathfrak{Mr}_2\mathfrak{Cs}(G)$

 $\mathfrak{Mr}_2\mathfrak{Cs}(H)$

 $\mathfrak{Mr}_2\mathfrak{Cs}(G)$

 $\mathfrak{Mr}_2\mathfrak{Cs}(H)$

 $\mathfrak{Mr}_2\mathfrak{Cs}(H)$

 $\mathfrak{Mr}_2\mathfrak{Cs}(G)$

 $\mathfrak{Mr}_2\mathfrak{Cs}(H)$

 $\mathfrak{Nr}_2\mathfrak{Cs}(G)$

 $\mathfrak{Mr}_2\mathfrak{Cs}(G)$

 $\mathfrak{Mr}_2\mathfrak{Cs}(H)$

Nodes O representing CAs

 \bigcirc

Nodes O representing CAs

Blue Edges: adjacent by a large inclusion

Nodes O representing CAs

Blue Edges: adjacent by a large inclusion

Dashed Red Edges: isomorphic algebras

Definition (Conceptual distance)

If \mathfrak{A} and \mathfrak{B} are not connected, then $d_{\mathfrak{g}}(\mathfrak{A},\mathfrak{B}) \stackrel{\text{\tiny def}}{=} \infty$.

Definition (Conceptual distance)

If \mathfrak{A} and \mathfrak{B} are not connected, then $d_{\mathfrak{g}}(\mathfrak{A},\mathfrak{B}) \stackrel{\text{def}}{=} \infty$. Otherwise, $d_{\mathfrak{g}}(\mathfrak{A},\mathfrak{B})$ is the minimum number of blue edges among all finite paths connecting \mathfrak{A} and \mathfrak{B} .

Definition (Conceptual distance)

If \mathfrak{A} and \mathfrak{B} are not connected, then $d_{\mathfrak{g}}(\mathfrak{A},\mathfrak{B}) \stackrel{\text{def}}{=} \infty$. Otherwise, $d_{\mathfrak{g}}(\mathfrak{A},\mathfrak{B})$ is the minimum number of blue edges among all finite paths connecting \mathfrak{A} and \mathfrak{B} .

THEORIES OF PHYSICS ...

Hajnal Andréka

Judit Madarász

lstván Németi

Gergely Székely

Hajnal Andréka Judit Madarász

István Németi

Gergely Székely

SpecRel

Theorem (K. Lefever & G. Szekély 2017)

Classical and relativistic kinematics are distinguished by only one concept.

Theorem (K. Lefever & G. Szekély 2017)

Classical and relativistic kinematics are distinguished by only one concept.

Metric Functions

Metric Functions

• Precise definitions for concept adding/removal?

• Precise definitions for concept adding/removal?

• Here is an idea from algebra:

Metric Functions

Metric Functions

- Precise definitions for concept adding/removal?
- Here is an idea from algebra:

- M. Khaled, G. Székely, K. Lefever and M. Friend (2020). DISTANCES BETWEEN FORMAL THEORIES. The Review of Symbolic Logic, 13(3), pp. 633 654.
- M. Khaled and G. Székely (2021). ALGEBRAS OF CONCEPTS AND THEIR NETWORKS. In: T. Allahviranloo, S. Salahshour, N. Arica (eds), Progress in Intelligent Decision Science. IDS 2020. Advances in Intelligent Systems and Computing, vol 1301. Springer, pp. 611–622.
- T. Aslan, M. Khaled and G. Székely (2021). ON THE NETWORKS OF LARGE EMBEDDINGS. In preparation.

Thank you!