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Concept Algebras ...



What are concepts?

A model M is a non-empty set M together with some costants, relations and operations
on M.

A concept is a relation that can be defined on M, using its own langauge.

Example

Suppose that (G , ·, e) is a group, then:

• “The center Z (G ) of G ” is a concept. ∀y (x · y = y · x)

• “All elements of finite order in G ” is not a concept. ∃n (xn = e)
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Spaces of concepts

• We assume a fixed enumeration v0, v1, . . . of the individual variables.

• Define the meaning of

ϕ = ϕ(vi1 , . . . , vin)

in M as follows:

[ϕ]M
def
=

{
(a0, a1, . . .) ∈ Mω : ϕ(ai1 , . . . , ain) is true in M

}

⊆ Mω

0
1

2

[v0 = v1 ∧ v2 < v1]R

0
1

2

[v0 = v1 ∧ v1 < v2]R
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Geometry of concepts

• [ϕ ∨ ψ]M = [ϕ]M ∪ [ψ]M

• [¬ϕ]M = Mω ∼ [ϕ]M

•
[
∃vi ϕ

]M
=

{
ā ∈ Mω :

(
∃ā′ ∈ [ϕ]M

)
ā ≡i ā

′}

def
= Ci [ϕ]M

• [vi = vj ]
M = {ā ∈ Mω : ai = aj}

def
= Dij

0
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2

D01 =

[v0 = v1]M
0

1

[ϕ]M

C0[ϕ]M
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Algebras of concepts

Definition
The concept algebra of M is:

Cs(M)
def
= 〈Cs(M),∪,∼,Ci ,Dij〉i ,j<ω.
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Ex: Cs(G ) of a simple graph G

D

A B

C

Red; Red; Edge; Equal

NrnCs(G )

is atomic

Nr1Cs(G ) ⊆ · · · ⊆ NrnCs(G ) ⊆ · · ·

(c0, . . . , ci , . . . , cj , . . . , cn−1,−−)

cicj edge? ci = cj?
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“The corresponding facit of the theory of cylindric algebras is to describe the
cylindric set algebras Cs(M) for important models M. This amounts to looking
at complete theories only, which is customary in model theory. It is somewhat
surprising that this aspect of the theory of cylindric algebras has been almost
entirely neglected. A complete description of Cs(M) is known only in the case in
which M has only one-place relations. There are many other simple structures
where the description of Cs(M) should not be difficult; for example, for M the
rationals under their natural ordering."

[
Monk, J.D.: An introduction to cylindric set algebras. Logic Journal of the IGPL 8, 451–496 (2000)

]
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Logic vs Algebra II

Definition

Cs(M) is a large subalgebra of Cs(N):

Cs(M) ⇀ Cs(N)
def⇐⇒ ∃a ∈ Cs(N) such that 〈Cs(M) ∪ {a}〉 = Cs(N)
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Logic vs Algebra II

Definition
N is a one concept-extension of M:

M N
def⇐⇒ M = N, L(N) = L(M) ∪ {R} and M v N

∃ N′ such that M N′ � N ⇐⇒ ∃ N′ such that Cs(M) ⇀ Cs(N′) ∼= Cs(N)



Logic vs Algebra II

Definition
N is a one concept-extension of M:

M N
def⇐⇒ M = N, L(N) = L(M) ∪ {R} and M v N

∃ N′ such that M N′ � N ⇐⇒ ∃ N′ such that Cs(M) ⇀ Cs(N′) ∼= Cs(N)



Logic vs Algebra II

D

A B

C

Simple graph G

D

A B

C

Simple graph H

∃ N′ such that G  N′ � H



Logic vs Algebra II

D

A B

C

Simple graph G

D

A B

C

Simple graph H

∃ N′ such that G  N′ � H



Logic vs Algebra II

D

A B

C

Simple graph G

D

A B

C

Simple graph H

∃ N′ such that G  N′ � H



Logic vs Algebra II

0

1

A

A

C

C

B

B

D

D

Nr2Cs(G )

0

1

A

A

C

C

B

B

D

D

Nr2Cs(H)



Logic vs Algebra II

0

1

A

A

C

C

B

B

D

D

Nr2Cs(G )

0

1

A

A

C

C

B

B

D

D

Nr2Cs(H)



Logic vs Algebra II

0

1

A

A

C

C

B

B

D

D

Nr2Cs(G )

0

1

A

A

C

C

B

B

D

D

Nr2Cs(H)



Logic vs Algebra II

0

1

A

A

C

C

B

B

D

D

Nr2Cs(G )

0

1

A

A

C

C

B

B

D

D

Nr2Cs(H)



Logic vs Algebra II

0

1

A

A

C

C

B

B

D

D

Nr2Cs(G )

0

1

A

A

C

C

B

B

D

D

Nr2Cs(H)



Logic vs Algebra II

0

1

A

A

C

C

B

B

D

D

Nr2Cs(G )

0

1

A

A

C

C

B

B

D

D

Nr2Cs(H)



Logic vs Algebra II

0

1

A

A

C

C

B

B

D

D

Nr2Cs(G )

0

1

A

A

C

C

B

B

D

D

Nr2Cs(H)



Network of concept algebras

Nodes representing CAs

Blue Edges: adjacent by a large inclusion

Dashed Red Edges: isomorphic algebras
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Conceptual distance

Definition (Conceptual distance)

If A and B are not connected, then dg(A,B)
def
=∞. Otherwise, dg(A,B) is the

minimum number of blue edges among all finite paths connecting A and B.
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