On Surplus Structure Arguments

Samuel C. Fletcher

Department of Philosophy Minnesota Center for Philosophy of Science University of Minnesota, Twin Cities

July 14, 2021

Leibniz's Static & Kinematic Shift Arguments

Fig. 5 of DiSalle, Robert, "Space and Time: Inertial Frames", The Stanford Encyclopedia of Philosophy (Summer 2020 Edition), Edward N. Zalta (ed.) https://plato.stanford.edu/archives/sum2020/entries/spacetime=iframes/ = ~

Surplus structure arguments seem to commit to the following two principles (p. 319):

D1: The symmetries of a classical theory are those transformations that map solutions of the theory's equation of motion to solutions of the theory's equation of motion.

D2: Two solutions of a classical theory's equation of motion are related by a symmetry if and only if they are physically equivalent ...

 \Rightarrow All solutions are physically equivalent.

"I leave it as a challenge to the reader to identify a general and interesting formal notion of symmetry [i.e., a rendering of D1] that renders D2 true" (p. 333).

From Belot, Gordon [2013]: 'Symmetry and Equivalence', in R. Batterman (ed.), *The* Oxford Handbook of Philosophy of Physics, Oxford: Oxford University Bress, ap. 318-339

Surplus structure arguments seem to commit to the following two principles (p. 319):

D1: The symmetries of a classical theory are those transformations that map solutions of the theory's equation of motion to solutions of the theory's equation of motion.

D2: Two solutions of a classical theory's equation of motion are related by a symmetry if and only if they are physically equivalent ...

 \Rightarrow All solutions are physically equivalent.

"I leave it as a challenge to the reader to identify a general and interesting formal notion of symmetry [i.e., a rendering of D1] that renders D2 true" (p. 333).

From Belot, Gordon [2013]: 'Symmetry and Equivalence', in R. Batterman (ed.), *The* Oxford Handbook of Philosophy of Physics, Oxford: Oxford University Bress, ap. 318-339

Surplus structure arguments seem to commit to the following two principles (p. 319):

D1: The symmetries of a classical theory are those transformations that map solutions of the theory's equation of motion to solutions of the theory's equation of motion.

D2: Two solutions of a classical theory's equation of motion are related by a symmetry if and only if they are physically equivalent ...

\Rightarrow All solutions are physically equivalent.

"I leave it as a challenge to the reader to identify a general and interesting formal notion of symmetry [i.e., a rendering of D1] that renders D2 true" (p. 333).

From Belot, Gordon [2013]: 'Symmetry and Equivalence', in R. Batterman (ed.), *The* Oxford Handbook of Philosophy of Physics, Oxford: Oxford University Bress, 20, 318-339

Surplus structure arguments seem to commit to the following two principles (p. 319):

D1: The symmetries of a classical theory are those transformations that map solutions of the theory's equation of motion to solutions of the theory's equation of motion.

D2: Two solutions of a classical theory's equation of motion are related by a symmetry if and only if they are physically equivalent ...

 \Rightarrow All solutions are physically equivalent.

"I leave it as a challenge to the reader to identify a general and interesting formal notion of symmetry [i.e., a rendering of D1] that renders D2 true" (p. 333).

From Belot, Gordon [2013]: 'Symmetry and Equivalence', in R. Batterman (ed.), *The* Oxford Handbook of Philosophy of Physics, Oxford: Oxford University Bress, ap. 318-339

Surplus structure arguments seem to commit to the following two principles (p. 319):

D1: The symmetries of a classical theory are those transformations that map solutions of the theory's equation of motion to solutions of the theory's equation of motion.

D2: Two solutions of a classical theory's equation of motion are related by a symmetry if and only if they are physically equivalent ...

 \Rightarrow All solutions are physically equivalent.

"I leave it as a challenge to the reader to identify a general and interesting formal notion of symmetry [i.e., a rendering of D1] that renders D2 true" (p. 333).

From Belot, Gordon [2013]: 'Symmetry and Equivalence', in R. Batterman (ed.), *The Oxford Handbook of Philosophy of Physics*, Oxford: Oxford University Press, pp. 318–339.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

- More or less formally, with different *types* for what structures they preserve.
- 2 What is the relationship between symmetry and interpretation/physical equivalence?
 - The surplus structure argument gives a valid ceteris paribus argument.
 - This argument only invokes certain specific types of symmetry.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

- More or less formally, with different *types* for what structures they preserve.
- What is the relationship between symmetry and interpretation/physical equivalence?
 - The surplus structure argument gives a valid ceteris paribus argument.
 - This argument only invokes certain specific types of symmetry.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- More or less formally, with different *types* for what structures they preserve.
- What is the relationship between symmetry and interpretation/physical equivalence?
 - The surplus structure argument gives a valid *ceteris paribus* argument.
 - This argument only invokes certain specific types of symmetry.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- More or less formally, with different *types* for what structures they preserve.
- 2 What is the relationship between symmetry and interpretation/physical equivalence?
 - The surplus structure argument gives a valid *ceteris paribus* argument.
 - This argument only invokes certain specific types of symmetry.

- More or less formally, with different *types* for what structures they preserve.
- What is the relationship between symmetry and interpretation/physical equivalence?
 - The surplus structure argument gives a valid *ceteris paribus* argument.
 - This argument only invokes certain specific types of symmetry.

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1 Symmetries of Models and Theories

2 The Surplus Structure Argument

3 The Circularity Objection

4 The Scope of Surplus Structure Arguments

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1 Symmetries of Models and Theories

- 2 The Surplus Structure Argument
- **3** The Circularity Objection
- 4 The Scope of Surplus Structure Arguments

Models and Properties

ション 小田 マイビット ビックタン

 \mathcal{S} : a space of models/states of a physical system characterizing some phenomenon of interest.

X: a property assignment to (at least some of) S. E.g.,

- $X : S \rightarrow \{\bot, \top\}$ represents a Boolean property.
- $X : S \to \mathbb{R}$ represents a real-valued property.

Example

The Boolean property *L* picks out the *nomologically possible* models, i.e., the ones that satisfy the *laws* of a theory of interest.

Observable Properties

Some property assignments *O* represents observable properties. (Not a merely formal matter.)

 \sim_{O} : equivalence relation on cod(O) of mutual observational indistinguishability.

~: equivalence relation on S of mutual observational indistinguishability: $s \sim s'$ iff $O(s) \sim_O O(s')$ for all observable properties O.

Transformation and Preservation

Let a bijection $T : S \to S$ that is not an automorphism be called a *transformation* of S.

Some transformations *preserve* properties, relations, or other structures on S.

X-symmetry

T preserves the assignment *X* iff for all $s \in S$, $X(s) = (X \circ T)(s)$.

Transformation and Observation

Observational Symmetry

T preserves observational properties iff for all $s \in S$, $s \sim T(s)$.

Note that this is stronger that preserving mutual observational distinguishability since it requires $O = O \circ T$ for all observational properties O.

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Symmetries of Models and Theories

2 The Surplus Structure Argument

3 The Circularity Objection

4 The Scope of Surplus Structure Arguments

Let S be the kinematically possible models and L be the Boolean property assignment of nomological possibility.

- Suppose that X is a property assignment and T is a transformation that is an observational symmetry and an L-symmetry but not an X-symmetry.
- 2 Thus, X represents a property that is not observationally detectable.
- Geteris paribus, we should prefer an interpretation of S that dispenses with (the reality of) X over one that does not.

There are two (related) Occamist norms in play: ontological and representational.

Let S be the kinematically possible models and L be the Boolean property assignment of nomological possibility.

- Suppose that X is a property assignment and T is a transformation that is an observational symmetry and an L-symmetry but not an X-symmetry.
- 2 Thus, X represents a property that is not observationally detectable.
- Geteris paribus, we should prefer an interpretation of S that dispenses with (the reality of) X over one that does not.

There are two (related) Occamist norms in play: ontological and representational.

Let S be the kinematically possible models and L be the Boolean property assignment of nomological possibility.

- Suppose that X is a property assignment and T is a transformation that is an observational symmetry and an L-symmetry but not an X-symmetry.
- 2 Thus, X represents a property that is not observationally detectable.
- Geteris paribus, we should prefer an interpretation of S that dispenses with (the reality of) X over one that does not.

There are two (related) Occamist norms in play: ontological and representational.

Let S be the kinematically possible models and L be the Boolean property assignment of nomological possibility.

- Suppose that X is a property assignment and T is a transformation that is an observational symmetry and an L-symmetry but not an X-symmetry.
- 2 Thus, X represents a property that is not observationally detectable.
- Ceteris paribus, we should prefer an interpretation of S that dispenses with (the reality of) X over one that does not.

There are two (related) Occamist norms in play: ontological and representational.

Why Ceteris Paribus?

▲□▶▲□▶▲□▶▲□▶ ■ のへで

- The Occamist norms censure one theoretical vice among many.
- We may not have a suitable alternative.
- Intertheoretic relations, such as embedding and unity of interpretation.

Outline

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Symmetries of Models and Theories

2 The Surplus Structure Argument

3 The Circularity Objection

4 The Scope of Surplus Structure Arguments

Vicious Circularity?

A surplus structure argument presupposes a list of observational properties, yet we often use premises about symmetries in order to work out which physical features fix the [observational] data, so we cannot at the same time define symmetries to be those operations that preserve features that fix the [observational] data (p. 865)

My response:

- What matters is the coherence of an interpretation with symmetry.
- Employ reflective equilibrium: 4 steps.

Vicious Circularity?

A surplus structure argument presupposes a list of observational properties, yet we often use premises about symmetries in order to work out which physical features fix the [observational] data, so we cannot at the same time define symmetries to be those operations that preserve features that fix the [observational] data (p. 865)

My response:

- What matters is the coherence of an interpretation with symmetry.
- Employ reflective equilibrium: 4 steps.

Dasgupta, Shamik [2016]: "Symmetry as an Epistemic Notion (Twice Over)", *British* Journal for the Philosophy of Science, 67, pp. 837–878.

Vicious Circularity?

A surplus structure argument presupposes a list of observational properties, yet we often use premises about symmetries in order to work out which physical features fix the [observational] data, so we cannot at the same time define symmetries to be those operations that preserve features that fix the [observational] data (p. 865)

My response:

- What matters is the coherence of an interpretation with symmetry.
- Employ reflective equilibrium: 4 steps.

Dasgupta, Shamik [2016]: "Symmetry as an Epistemic Notion (Twice Over)", *British Journal for the Philosophy of Science*, 67, pp. 837–878.

Reflective Equilibrium I

Propose plausible and empirically adequate (or nearly enough so) theory of a system of interest:

- states or models
- observable properties
- representation relations

Then, identify the observational symmetries.

Reflective Equilibrium II

Test both the models, observable properties, and representation relations:

Wide enough?

- Test by experimentation.
- Needs to account for plethora of experience.
- Can introduce new states or observables.

Narrow enough?

- Test by surplus structure arguments.
- Dispense with properties that add little value to the theory.
- Can reduce states or observables.

Eliminating states or observable properties can introduce more observational symmetries, while introducing new states or observables can eliminate some of them.

Reflective Equilibrium II

Test both the models, observable properties, and representation relations:

Wide enough?

- Test by experimentation.
- Needs to account for plethora of experience.
- Can introduce new states or observables.

Narrow enough?

- Test by surplus structure arguments.
- Dispense with properties that add little value to the theory.
- Can reduce states or observables.

Eliminating states or observable properties can introduce more observational symmetries, while introducing new states or observables can eliminate some of them.

Reflective Equilibrium II

Test both the models, observable properties, and representation relations:

Wide enough?

- Test by experimentation.
- Needs to account for plethora of experience.
- Can introduce new states or observables.

Narrow enough?

- Test by surplus structure arguments.
- Dispense with properties that add little value to the theory.
- Can reduce states or observables.

Eliminating states or observable properties can introduce more observational symmetries, while introducing new states or observables can eliminate some of them.

Reflective Equilibrium III

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

If surplus structure arguments identify surplus structure, one can:

- quotient states by an observational symmetry to eliminate it, or
- change some observational symmetries to isomporphisms.

Which technique one chooses depends on balancing the interpretative and explanatory considerations at hand.

Reflective Equilibrium III

If surplus structure arguments identify surplus structure, one can:

- quotient states by an observational symmetry to eliminate it, or
- change some observational symmetries to isomporphisms.

Which technique one chooses depends on balancing the interpretative and explanatory considerations at hand.

Reflective Equilibrium III

If surplus structure arguments identify surplus structure, one can:

- quotient states by an observational symmetry to eliminate it, or
- change some observational symmetries to isomporphisms. Which technique one chooses depends on balancing the interpretative and explanatory considerations at hand.

Reflective Equilibrium IV

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Return to step II as new theoretical arguments and experimental facts about observables and their representation arises.

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Symmetries of Models and Theories

2 The Surplus Structure Argument

3 The Circularity Objection

4 The Scope of Surplus Structure Arguments

Back to Belot

Contra Belot, neither of his two principles play a role in the surplus structure argument (SSA):

D1: The symmetries of a classical theory are those transformations that map solutions of the theory's equation of motion to solutions of the theory's equation of motion.

• *L*-symmetries are just one type, and those that figure in the SSA are also observational symmetries.

D2: Two solutions of a classical theory's equation of motion are related by a symmetry if and only if they are physically equivalent.

Back to Belot

Contra Belot, neither of his two principles play a role in the surplus structure argument (SSA):

D1: The symmetries of a classical theory are those transformations that map solutions of the theory's equation of motion to solutions of the theory's equation of motion.

• *L*-symmetries are just one type, and those that figure in the SSA are also observational symmetries.

D2: Two solutions of a classical theory's equation of motion are related by a symmetry if and only if they are physically equivalent.

Back to Belot

Contra Belot, neither of his two principles play a role in the surplus structure argument (SSA):

D1: The symmetries of a classical theory are those transformations that map solutions of the theory's equation of motion to solutions of the theory's equation of motion.

• *L*-symmetries are just one type, and those that figure in the SSA are also observational symmetries.

D2: Two solutions of a classical theory's equation of motion are related by a symmetry if and only if they are physically equivalent.

Recap of Conclusions

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

1 The SSA provides a link between interpretation and symmetry and has a valid ceteris paribus form using Occamist norms.

2 This link is implemented via reflective equilibrium, not a priori.

Belot's D1 captures only one type of symmetry and his D2 is not central in the SSA.

Recap of Conclusions

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 1 The SSA provides a link between interpretation and symmetry and has a valid ceteris paribus form using Occamist norms.
- 2 This link is implemented via reflective equilibrium, not a priori.
- Belot's D1 captures only one type of symmetry and his D2 is not central in the SSA.

Recap of Conclusions

- 1 The SSA provides a link between interpretation and symmetry and has a valid ceteris paribus form using Occamist norms.
- 2 This link is implemented via reflective equilibrium, not a priori.
- Belot's D1 captures only one type of symmetry and his D2 is not central in the SSA.