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from logic(ish) input to algebraic(ish) output

I Burnside-Schanuel semiring

(logic)→ (distributive category)→ (semiring)

I weakly initial objects in the category of models and
embeddings of a first-order theory

I coalgebras and Hopf algebras of finite models



distributive category

Definition: Category C with finite products and coproducts such
that the canonical maps

∅ → X ×∅

X × Y t X × Z → X × (Y t Z )

are isomorphisms.

Remark Could play with two symmetric monoidal structures, one
of which distributes across the other, but details are surprisingly
involved.



category of definable sets and functions

Given logic L in the signature S and S-structure X , consider

objects: 〈n,A〉 where

A = {x ∈ X n | X |= φ(x) for some φ ∈ LX}

i.e. L-definable subset of some X n, with parameters from X

morphism from 〈n,A〉 to 〈m,B〉: L-definable subset of X n+m that
is the graph of a function from A to B.

These form a category, to be denoted Def(X).



category of formulas and provable functions

Given logic L and theory T , consider

objects: 〈x, φ〉 where φ ∈ L containing no free variables other
than x

morphism from 〈x, φ〉 to 〈y, ψ〉 is 〈x t y, ξ〉 such that

T ` ∀x
(
φ(x)→ ∃!yξ(x, y)

)
T ` ∀x, y

(
φ(x) ∧ ξ(x, y)→ ψ(y)

)
i.e. T proves that ξ defines the graph of a function from φ to ψ.

These form a category, to be denoted DefT .



distributive categories from logical data

Take L to be classical first order logic (possibly many-sorted).
Then both Def(X) and DefT

I have terminal objects and pullbacks
(in the case of Def(X), these are computed as in Set)

I have finite coproducts

I are boolean (subobject lattices are boolean algebras; every
subobject is a coproduct summand)

I are distributive.



semirings

All semirings (for us) will be commutative and unital, that is:

A semiring is a set with two commutative, unital binary operations
~ and � such that the former distributes over the latter:

x ~ (y � z) = (x ~ y)� (x ~ z)

(x � y)~ z = (x ~ z)� (y ~ z)

x ~ 0 = 0~ x = 0

where 0 is the unit for �.



Grothendieck (semi)ring of a (small) distributive category C
SK (C) is the semiring whose elements are isomorphism classes [X ]
of objects X , with [X ] · [Y ] := [X × Y ] and [X ] + [Y ] := [X t Y ].

K (C), the Grothendieck ring of C, is the abelian group generated
by isomorphism classes [X ] of objects X , with the relations
[X t Y ] = [X ] + [Y ]. Multiplication is induced by
[X ] · [Y ] = [X × Y ].

Remark Schanuel (1990) calls SK (C) the “Burnside rig of C”.
There is no standard name for this algebra; I will call it the
“Burnside-Schanuel semiring” of C.

Remark Any semiring freely generates a ring; adjunction of
categories

Ring
euler
�

inclusion
SemiRing

SK (C) determines K (C) purely algebraically, since
K (C) = euler

(
SK (C)

)
.



tropical semiring N−∞

The underlying set is N ∪ {−∞} with
x ~ y := x + y (x , y 6= −∞)

x ~−∞ := −∞
x � y := max{x , y} (x , y 6= −∞)

x �−∞ := x

Same structure, written “multiplicatively”: formal symbol q
(q > 1) underlying set := {0, 1, q, q2, . . . , qn, . . . }

x ~ y := x · y x � y := max{x , y}

N−∞ is a finitely presentable semiring. The free semiring
generated by the singleton X is N[X ] (the semiring of polynomials
in the variable X with non-negative integer coefficients under
addition and multiplication) and N−∞ is isomorphic to N[X ]
modulo the two relations 1 + 1 = 1 and 1 + X = X .



semi-algebraic sets

Definition 1 Semi-algebraic sets are the subsets of Rn first-order
definable (with parameters) in the language of · + > =

Definition 2 Semi-algebraic sets are finite boolean combinations
in Rn of sets of the form

{x ∈ Rn | p(x) > 0}

where p is a polynomial in the variables x = 〈x1, x2, . . . , xn〉.

The two definitions are equivalent by the Tarski-Seidenberg
theorem (the theory of real closed ordered fields has quantifier
elimination; the projection of a semi-algebraic set is
semi-algebraic).



SemiAlg

Let SemiAlg be Def(R; +, ·, >,=), the category of semi-algebraic
sets and functions.

remark Morphisms of SemiAlg need not be continuous!

Objects X ,Y of SemiAlg are isomorphic iff there is a
semi-algebraic pointwise bijection between them.

This is equivalent to X and Y being semi-algebraically
topologically equidecomposable: X =

⊔k
i=1 Xi and Y =

⊔k
i=1 Yi ,

with Xi semi-algebraically homeomorphic to Yi .



so pretty!

Theorem (Schanuel 1990)

SK (SemiAlg) is a finitely presentable semiring, isomorphic to

N[X ] modulo the relation X = 2X + 1 .



in pictures



exercise

Show that (0, 1)n (the open n-dimensional cube) and ∆o
n (the

open n-dimensional simplex) are equidecomposable via piecewise
linear maps.



There exist semiring homomorphisms (defined purely algebraically)

dimalg : N[X ]/(X = 2X + 1)→ N−∞

euleralg : N[X ]/(X = 2X + 1)→ Z

The product map

N[X ]/(X = 2X + 1)
dimalg ×euleralg−−−−−−−−−→ N−∞ × Z

is injective.

There exist semiring homomorphisms (defined with the help of cell
decompositions; deep!)

dimtop : SK (SemiAlg)→ N−∞

eulertop : SK (SemiAlg)→ Z



Schanuel’s proof

Commutative diagram of semirings

N[X ]/(X = 2X + 1) //
dimalg ×euleralg //

X 7→(0,1) )) ))

N−∞ × Z

SK (SemiAlg)

dimtop ×eulertop

77

Top horizontal arrow is injective and slanted down arrow is
surjective. It follows that the slanted down arrow is an
isomorphism.



corollaries of Schanuel’s proof

I K (SemiAlg) = euler
(
SK (SemiAlg)

)
= Z

I SK (SemiAlg)
dim×eu−−−−−→ N−∞ × Z is injective (Schanuel 1990;

o-minimally, van den Dries 1998)

I the open interval (0, 1) is the unique (up to isomorphism)
semiring generator of SK (SemiAlg)

I the Burnside-Schanuel semirings of the following distributive
categories
I Def(R) for any real closed field R
I DefT where T is the theory of real closed fields
I Def(Rexp) for any o-minimal expansion of (R, ·,+, <)

are isomorphic to N[X ]/(X = 2X + 1).



moral

I SK (C) carries more information than K (C). SK (C) is never
trivial; K (C) is a singleton iff there exists in C a definable
injection from a definable set A to A− {a} (where a ∈ A), cf.
Krajicek-Scanlon (2000).

I Similar proofs work for the category of semilinear sets,
bounded semilinear sets . . . Structures whose
Burnside-Schanuel semiring is finitely presentable should be
thought of as “cellular”.

I Question: which finitely presentable semirings arise as SK (C)?
Elbaz Saban (2020) conjectures that all finitely presentable
rings arise as Grothendieck rings of theories.

I Schanuel (1990) adds further relations to the
Burnside-Schanuel semiring and suggests that the resulting
structure — which is simultaneously a join semilattice and a
semiring — can be thought of as an “algebraic
approximation” to dimension.



from logic(ish) input to algebraic(ish) output

I Burnside-Schanuel semiring

(logic)→ (distributive category)→ (semiring)

I weakly initial objects in the category of models and
embeddings of a first-order theory

I coalgebras and Hopf algebras of finite models



where is Ramsey theory?







very roughly . . .

I Any large enough structure will necessarily contain certain
patterns.

structure → model of (first-order) theory
contains → (induced) substructure
pattern → (finite set of) (isomorphism classes of) models

I Any large enough model of a theory T will contain a submodel
isomorphic to one of a finite set of distinguished models.

I The theory T possesses a finite set of countable models such
that any infinite model contains a submodel isomorphic to one
of them.
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set-up

L relational signature

T first order theory in L

Mod(T ) category whose objects are infinite models of T ; morphism
f : X → Y is map of underlying sets such that for all R ∈ L,

X |= R(x1, x2, . . . , xn) iff Y |= R
(
f (x1), f (x2), . . . , f (xn)

)
A set I of objects of a category C is weakly initial if

I for all objects X ∈ C, there exists I ∈ I and morphism I → X

I for non-isomorphic U,V ∈ I there exists no morphism
U → V .



theorem

For every universal theory T in a finite relational signature L that
has an infinite model, the category Mod(T ) has a weakly initial set
I of objects.

Weakly initial sets of Mod(T ) are finite and unique up to
isomorphism (i.e. same cardinality, containing the same
isomorphism classes of objects).



theorem, cont’d

If I is a weakly initial set of objects then

1 6 card(I) 6 2 to the power of
∑
R∈L
B
(
arity(R)

)
where B(n) is the n-th ordered Bell number, i.e. number of ordered
partitions of {1, 2, . . . , n}

B(n) =
n∑

m=0

{
n
m

}
·m!

where

{
n
m

}
is the Stirling number of the second kind.



theorem, cont’d

For any model X of a universal theory T in a relational signature
L and subset S ⊆ X , let X |S be the L-structure induced on S by
restriction from X . Since T is a universal theory, X |S |= T .

Definition A countably infinite model X of T is self-similar if for
all countably infinite S ⊂ X , X |S is isomorphic to X (as
L-structures).

The weakly initial set of Mod(T ) then consists of the
(isomorphism types of) countably infinite, self-similar models of T .



example 1

L consists of binary predicate R; T := tournaments

∀x qR(x , x)

∀x∀y
(
x 6= y → R(x , y)OR(y , x)

)
Then I = {I+, I−}. Both I+ and I− have underlying set ω and

I+ = R(i , j) iff i < j

I− = R(i , j) iff i > j



example 2

L consists of k predicates Ri , each of arity n
T := coloring of unordered n-tuples with k colors

∀x1, x2, . . . , xn
(
Ri (x1, x2, . . . , xn)↔ Ri (xσ(1), xσ(2), . . . , xσ(n))

)
for each i and for all permutations σ of 1, 2, . . . , n

∀x1, x2, . . . , xn
(
xi = xj → qRp(x1, x2, . . . , xn)

)
for each 1 6 i < j 6 n and 1 6 p 6 k

∀x1, x2, . . . , xn
( ∧
16i<j6n

xi 6= xj → R1(x) ∨ R2(x) ∨ . . . ∨ Rk(x)
)

∀xq
(
Ri (x) ∧ Rj(x)

)
for all 1 6 i < j 6 k

Then I = {I1, I2, . . . Ik}. Ij has underlying set ω, with all n-element
subsets “colored” Rj .



example 3

L = {<,≺}; T := < is linear order, ≺ is strict partial order.

I = {I+, I0, I−}. All have underlying set ω with its <.

I+ = i ≺ j iff i < j

I− = i ≺ j iff i > j

I0 = i ≺ j for no i , j

“ Any infinite poset contains a countable ascending chain or a
countable descending chain or a countable antichain ”



proof

I same as the construction of a countable indiscernible sequence
(for universal theories in a relational language L, can be done
inside the model!)

I order-indiscernibles are usually constructed using Ramsey’s
theorem, but the same proof works; use induction on

max{arity(R) | R ∈ L}

I 2
∑

R∈L B(arity(R)) is upper bound on the number of complete
quantifier-free types consistent with a universal theory T in
the finite relational signature L (achieved when T is the
empty theory)

I Ramsey basically constructs indiscernible sequences in his
1928 paper!



Let T be a first-order universal theory in a finite relational
language. The category of infinite T -models and embeddings
contains a finite weakly initial set of objects, consisting of the
countably infinite, self-similar models.

I seems to capture the “natural” level of generality of Ramsey’s
infinite Ramsey theorem

I implies finite version (which looks quite different)

I extensions to infinite relational languages (“partition
calculus”)



category-theoretic reformulation?

Let T be a first-order universal theory in a finite relational
language. The category of infinite T -models and embeddings
contains a finite weakly initial set of objects.

This conclusion holds for first order theories T that do not have a
“Ramsey-like” feel!

- fields of characteristic 0 (Q is strictly initial)

- rings (Z is strictly initial)

- any theory with an infinite prime model

- G -Sets, for a finite group G

A better way of looking at weakly initial sets of objects would
involve bringing in the notion of finitely accessible category, cf.
Makkai-Paré (1989) or Adámek-Rosický (1994), and replacing size
of underlying set by presentability rank of the object.



from logic(ish) input to algebraic(ish) output
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