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from logic(ish) input to algebraic(ish) output

» Burnside-Schanuel semiring
(logic) — (distributive category) — (semiring)

» weakly initial objects in the category of models and
embeddings of a first-order theory

» coalgebras and Hopf algebras of finite models



distributive category

Definition: Category C with finite products and coproducts such
that the canonical maps

g = Xxg
XXxYUXxZ — Xx(YUZ)

are isomorphisms.

Remark Could play with two symmetric monoidal structures, one
of which distributes across the other, but details are surprisingly
involved.



category of definable sets and functions

Given logic £ in the signature S and S-structure X, consider

objects: (n, A) where

A={xe X" | X = ¢(x) for some ¢ € Lx}

i.e. L-definable subset of some X", with parameters from X

morphism from (n, A) to (m, B): L-definable subset of X"™*™ that
is the graph of a function from A to B.

These form a category, to be denoted Def(X).



category of formulas and provable functions

Given logic £ and theory T, consider

objects: (x,¢) where ¢ € £ containing no free variables other
than x

morphism from (x, ¢) to (y, 1) is (x Uy, &) such that
THE Vx(gb(x) — Fly&(x, y))

T Ex,y(0(x) A &(x,y) = ¥(y))
i.e. T proves that & defines the graph of a function from ¢ to .

These form a category, to be denoted Def.



distributive categories from logical data

Take £ to be classical first order logic (possibly many-sorted).
Then both Def(X) and Defr

» have terminal objects and pullbacks
(in the case of Def(X), these are computed as in Set)

» have finite coproducts

» are boolean (subobject lattices are boolean algebras; every
subobject is a coproduct summand)

» are distributive.



semirings

All semirings (for us) will be commutative and unital, that is:

A semiring is a set with two commutative, unital binary operations
® and H such that the former distributes over the latter:

x®(yHz)=(x®y)B(x®2)
(xBy)®z=(x®z)B(y® 2)
x®0=0®x =0

where 0 is the unit for B.



Grothendieck (semi)ring of a (small) distributive category C

SK(C) is the semiring whose elements are isomorphism classes [X]
of objects X, with [X]-[Y]:=[X x Y] and [X]+ [Y]:=[X U Y].

K(C), the Grothendieck ring of C, is the abelian group generated
by isomorphism classes [X] of objects X, with the relations

[X U Y] =[X]+[Y]. Multiplication is induced by
[X]-[Y]=[XxY]

Remark Schanuel (1990) calls SK(C) the “Burnside rig of C".
There is no standard name for this algebra; | will call it the
“Burnside-Schanuel semiring” of C.

Remark Any semiring freely generates a ring; adjunction of

categories
. euler .
Ring <  SemiRing

inclusion
SK(C) determines K(C) purely algebraically, since
K(C) = euler(SK(C)).



tropical semiring N_

The underlying set is NU {—o0} with

x®y =x+y (x,y#-00)
X®—00 =-—00

xHBy = max{x,y} (x,y # —o0)
xH-00o =x

Same structure, written “multiplicatively”: formal symbol g
n

(g > 1) underlying set := {0,1,49,¢°,...,q9",...}
X®Yy =x-y xHBy = max{x,y}

N_ is a finitely presentable semiring. The free semiring
generated by the singleton X is N[X] (the semiring of polynomials
in the variable X with non-negative integer coefficients under
addition and multiplication) and N_ is isomorphic to N[X]
modulo the two relations 1+ 1=1and 1 + X = X.



semi-algebraic sets

Definition 1 Semi-algebraic sets are the subsets of R” first-order
definable (with parameters) in the language of - + > =

Definition 2 Semi-algebraic sets are finite boolean combinations
in R” of sets of the form

{x e R" [ p(x) > 0}
where p is a polynomial in the variables x = (x1, x2,. .., Xp).

The two definitions are equivalent by the Tarski-Seidenberg
theorem (the theory of real closed ordered fields has quantifier
elimination; the projection of a semi-algebraic set is
semi-algebraic).



SemiAlg

Let SemiAlg be Def(R; +, -, >, =), the category of semi-algebraic
sets and functions.

remark Morphisms of SemiAlg need not be continuous!
Objects X, Y of SemiAlg are isomorphic iff there is a

semi-algebraic pointwise bijection between them.

This is equivalent to X and Y being semi-algebraically
topologically equidecomposable: X = [_]f-‘:1 Xiand Y = |_|f‘:1 Y;,
with X; semi-algebraically homeomorphic to Y;.



so pretty!

Theorem (Schanuel 1990)

SK(SemiAlg) is a finitely presentable semiring, isomorphic to

N[X] modulo the relation X =2X + 1.
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exercise

Show that (0,1)" (the open n-dimensional cube) and A¢ (the
open n-dimensional simplex) are equidecomposable via piecewise
linear maps.



There exist semiring homomorphisms (defined purely algebraically)
dima : N[X]/(X =2X +1) = N_
euleryg : N[X]/(X =2X+1) = Z
The product map

dimg, xeulery,
%

N[X]/(X =2X +1) N_o X Z
is injective.

There exist semiring homomorphisms (defined with the help of cell
decompositions; deep!)

dimyop : SK(SemiAlg) — N_

euleryop 1 SK(SemiAlg) — Z



Schanuel’s proof

Commutative diagram of semirings

dim,z Xeulery,

N[X]/(X = 2X + 1) N_oo X Z
X—(0,1) %eulermp

SK(SemiAlg)

Top horizontal arrow is injective and slanted down arrow is
surjective. It follows that the slanted down arrow is an
isomorphism.



corollaries of Schanuel's proof

> K(SemiAlg) = euler(SK(SemiAlg)) = Z

dim xeu

> SK(SemiAlg) ——— N_, x Z is injective (Schanuel 1990;
o-minimally, van den Dries 1998)

» the open interval (0, 1) is the unique (up to isomorphism)
semiring generator of SK(SemiAlg)

» the Burnside-Schanuel semirings of the following distributive
categories

» Def(R) for any real closed field R
» Defr where T is the theory of real closed fields
» Def(Rexp) for any o-minimal expansion of (R, -, +, <)

are isomorphic to N[X]/(X = 2X + 1).



moral

» SK(C) carries more information than K(C). SK(C) is never
trivial; K(C) is a singleton iff there exists in C a definable
injection from a definable set A to A — {a} (where a € A), cf.
Krajicek-Scanlon (2000).

» Similar proofs work for the category of semilinear sets,
bounded semilinear sets ... Structures whose
Burnside-Schanuel semiring is finitely presentable should be
thought of as “cellular”.

» Question: which finitely presentable semirings arise as SK(C)?
Elbaz Saban (2020) conjectures that all finitely presentable
rings arise as Grothendieck rings of theories.

» Schanuel (1990) adds further relations to the
Burnside-Schanuel semiring and suggests that the resulting
structure — which is simultaneously a join semilattice and a
semiring — can be thought of as an “algebraic
approximation” to dimension.



from logic(ish) input to algebraic(ish) output

» Burnside-Schanuel semiring

(logic) — (distributive category) — (semiring)

> weakly initial objects in the category of models and
embeddings of a first-order theory

P coalgebras and Hopf algebras of finite models



where is Ramsey theory?

Van der Waerden's theorem
density version
polynomial version Hindman's theorem
Folkman's theorem

Schur's theorem
Ramsey's theorem Ramsey's theorem
(finitary) (infinitary)
metric, structural, topological Ramsey theory
Graham-Rothschild theorem

Hales-Jewett theorem
density version

Paris-Harrington theorem
Kanamori-McAloon theorem
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very roughly ...

» Any large enough structure will necessarily contain certain
patterns.



very roughly ...

» Any large enough structure will necessarily contain certain
patterns.
structure — model of (first-order) theory

contains — (induced) substructure
pattern — (finite set of) (isomorphism classes of) models



very roughly ...

structure — model of (first-order) theory
contains — (induced) substructure
pattern — (finite set of) (isomorphism classes of) models
» Any large enough model of a theory T will contain a submodel
isomorphic to one of a finite set of distinguished models.



very roughly ...

» Any large enough model of a theory T will contain a submodel
isomorphic to one of a finite set of distinguished models.

» The theory T possesses a finite set of countable models such
that any infinite model contains a submodel isomorphic to one
of them.



L relational signature
T first order theory in £

Mod(T) category whose objects are infinite models of T; morphism
f : X = Y is map of underlying sets such that for all R € £,

X E R(x1, %2, ..., xn) iff Y = R(f(x1), f(x2), - ., F(xn))

A set T of objects of a category C is weakly initial if
» for all objects X € C, there exists | € Z and morphism | — X

» for non-isomorphic U, V € 7 there exists no morphism
Uu—vV.



For every universal theory T in a finite relational signature £ that
has an infinite model, the category Mod(T) has a weakly initial set
T of objects.

Weakly initial sets of Mod(T) are finite and unique up to
isomorphism (i.e. same cardinality, containing the same
isomorphism classes of objects).



theorem, cont'd

If Z is a weakly initial set of objects then

1 < card(Z) < 2 to the power of Z B(arity(R))
Rel

where B(n) is the n-th ordered Bell number, i.e. number of ordered
partitions of {1,2,...,n}

B(n) = Z {I';}-m!

m=0

where {:7} is the Stirling number of the second kind.



theorem, cont'd

For any model X of a universal theory T in a relational signature
L and subset S C X, let X|s be the L-structure induced on S by
restriction from X. Since T is a universal theory, X|s = T.

Definition A countably infinite model X of T is self-similar if for
all countably infinite S C X, X]s is isomorphic to X (as
L-structures).

The weakly initial set of Mod(T) then consists of the
(isomorphism types of) countably infinite, self-similar models of T.



L consists of binary predicate R; T := tournaments

Vx TR(x, x)
YxVy(x #y — R(x,y)VR(y,x))

Then Z = {/;,/_}. Both I+ and /_ have underlying set w and
I = R(i,j)iff i <j

I_ = R(i,j)iffi >}



L consists of k predicates R;, each of arity n
T := coloring of unordered n-tuples with k colors

VX]_,X2, AR 7Xn(Ri(X17X2a AR 7Xn) <_> Ri(XO'(l)7Xa'(2)7 AR aXo(n)))
for each i and for all permutations o of 1,2,...,n
VX1, X0, ... ,X,,(x,- =xj = 'Rp(x1,x,... ,x,,))

foreachl1<i<j<nand1<p<k
Vx1, X2, -+« Xn( /\ xi #xj = Ri(X)V Ra(x) V...V Ri(x))
1<i<j<n

Vx(Ri(x) A Rj(x)) forall 1 <i<j<k

Then Z = {l, b, ... Ic}. I; has underlying set w, with all n-element
subsets “colored” K;.



L ={<,<}; T := < is linear order, < is strict partial order.

Z = {ly, I, I-}. All have underlying set w with its <.
Io=i<jiffi<j
=i<jiffi>]
lp=i<jfornoi,j

“ Any infinite poset contains a countable ascending chain or a
countable descending chain or a countable antichain "



» same as the construction of a countable indiscernible sequence
(for universal theories in a relational language £, can be done
inside the model!)

» order-indiscernibles are usually constructed using Ramsey's
theorem, but the same proof works; use induction on

max{arity(R) | R € £}

» 22 rec B@rity(R)) is upper bound on the number of complete
quantifier-free types consistent with a universal theory T in
the finite relational signature £ (achieved when T is the
empty theory)

» Ramsey basically constructs indiscernible sequences in his
1928 paper!



Let T be a first-order universal theory in a finite relational
language. The category of infinite T-models and embeddings
contains a finite weakly initial set of objects, consisting of the
countably infinite, self-similar models.

P> seems to capture the “natural” level of generality of Ramsey's
infinite Ramsey theorem

» implies finite version (which looks quite different)

> extensions to infinite relational languages ( “partition
calculus™)



category-theoretic reformulation?

Let T be a first-order universal theory in a finite relational
language. The category of infinite T-models and embeddings
contains a finite weakly initial set of objects.

This conclusion holds for first order theories T that do not have a
“Ramsey-like” feel!

- fields of characteristic 0 (Q is strictly initial)

- rings (Z is strictly initial)

- any theory with an infinite prime model

- G-Sets, for a finite group G
A better way of looking at weakly initial sets of objects would
involve bringing in the notion of finitely accessible category, cf.

Makkai-Paré (1989) or Adamek-Rosicky (1994), and replacing size
of underlying set by presentability rank of the object.



from logic(ish) input to algebraic(ish) output

» Burnside-Schanuel semiring
(logic) — (distributive category) — (semiring)

» weakly initial objects in the category of models and
embeddings of a first-order theory

» coalgebras and Hopf algebras of finite models
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