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Tarskian Algebraic Logic–an area in-
terdisciplinary between logic, and alge-
bra (in fact the natural interface be-
tween universal algebra and logic) with
an accompanying extremely rich geom-
etry that has a varying dimension possi-
bly transfinite–reflected in Tarski?s cylin-
dric algebras now better known as Con-
cept Algebras when applied to (the al-
gebraization of) sophisticated first or-
der theories like spacetime geometries.
The canonical examples of the so-called
representable algebras, the cylindric set
algebra, provide a natural vehicle for
Model Theory, since cylindrifications re-
flect the semantics of existential quan-
tifiers in logic, and are simply forming
cylinders that is to say projections in
Geometry. Using cylindric set algebras
we approach Vaught’s conjecture.

In 1961, Robert Vaught asked the fol-
lowing question: Given a complete the-
ory in a countable language, is it the



case that it either has countably many

or 2ℵ0 non-isomorphic countable mod-

els? By the number of non-isomorphic

countable models is meant the num-

ber of their isomorphism-types; that is

the number of equivalence classes of

countable models w.r.t. the isomor-

phism relation between structures. We

shall just say “the number of countable

models” to mean the number of their

isomorphism-types.

The positive answer to the question is

more commonly know as Vaught’s Con-

jecture. (Vaught’s conjecture has the

reputation of being the most important

open problem in model theory.) How-

ever, some logicians do not agree to this

sweeping statement.

Quoting Shelah on this: People say

that settling Vaught’s conjecture is the



most important problem in Model the-

ory, because it makes us understand count-

able models of countable theories, which

are the most important models. We dis-

agree with all three statements.

Morley proved that the number of count-

able models is either less than or equal

to the first uncountable cardinal (≤ ℵ1)

or else it has the power of the contin-

uum. This is the best known (general)

answer to Vaught’s question. Later other

logicians confirmed Vaught’s conjecture

in some special cases of theories, for ex-

ample:

1. (Shelah)ω-stable theories;

2. (Buechler )superstable theories of

finite U-rank;



3. (Mayer)o-minimal theories;

4. (Miller) theories of linear orders with

unary predicates;

5. (Steel)theories of trees.

There are also attempts concerning

special kinds of models to count and

also relations other than isomorphisms

between models. Vaught’s conjecture

can be translated to counting the num-

ber of orbits corresponding to the ac-

tion of S∞, the symmetric group of ω,

on the Polish space of countable mod-

els. One way to obtain a positive re-

sult is to consider only isomorphisms in-

duced by a subgroup G of S∞ Vaught’s

conjecture has been confirmed when G

is solvable; the best result in this type



of investigations, is the case when G is

a cli group.

Our work here is inspired by Gabor

Sági, who approached Vaught’s conjec-

ture using the machinery of algebraic

logic.

Cylindric algebras-reflecting both syn-

tax and semantix

Cylindric set algebras are algebras whose

elements are relations of a certain pre-

assigned arity, endowed with set–theoretic

operations that utilize the form of el-

ements of the algebra as sets of se-

quences. For a set V , B(V ) denotes the

Boolean set algebra ⟨℘(V ),∪,∩,∼, ∅, V ⟩.
Let U be a set and α an ordinal; α will

be the dimension of the algebra. For

X ⊆ αU and i, j < α, let

CiX = {s ∈ αU : (∃t ∈ X)(t ≡i s)}



and

Dij = {s ∈ αU : si = sj}.

The algebra ⟨B(αU),Ci,Dij⟩i,j<α is called

the full cylindric set algebra of dimen-

sion α with unit (or greatest element)
αU . Any subalgebra of the latter is called

a set algebra of dimension α. Examples

of subalgebras of such set algebras arise

naturally from models of first order the-

ories. Indeed, if M is a first order struc-

ture in a first order signature L with α

many variables, then one manufactures

a cylindric set algebra based on M as

follows. Let

ϕM = {s ∈ αM : M |= ϕ[s]},

(here M |= ϕ[s] means that s satisfies

ϕ in M), then the set {ϕM : ϕ ∈ FmL}
is a cylindric set algebra of dimension

α, where FmL denotes the set of first



order formulas taken in the signature L.

To see why, we have:

ϕM ∩ ψM = (ϕ ∧ ψ)M,
αM ∼ ϕM = (¬ϕ)M,
Ci(ϕ

M) = (∃viϕ)M,
Dij = (xi = xj)

M.

By Csα we denote the class of all sub-

algebras of full set algebras of dimen-

sion α. The (equationally defined) CAα

class is obtained from cylindric set alge-

bras by a process of abstraction and is

defined by a finite schema of equations

that holds of course in the more con-

crete set algebras.



Definition .1.Let α be an ordinal. By a

cylindric algebra of dimension α, briefly

a CAα, we mean an algebra

A = ⟨A,+, ·,−,0,1, ci, dij⟩κ,λ<α
where ⟨A,+, ·,−,0,1⟩ is a Boolean al-

gebra such that 0,1, and dij are distin-

guished elements of A (for all j, i < α),

− and ci are unary operations on A (for

all i < α), + and . are binary operations

on A, and such that the following equa-

tions are satisfied for any x, y ∈ A and

any i, j, µ < α:

(C1) ci0 = 0,

(C2) x ≤ cix (i.e., x+ cix = cix),

(C3) ci(x · ciy) = cix · ciy,



(C4) cicjx = cjcix,

(C5) dii = 1,

(C6) if i ̸= j, µ, then djµ = ci(dji · diµ),

(C7) if i ̸= j, then ci(dij ·x)·ci(dij ·−x) = 0.

The varieties of representable algebras

of dimension α, α an ordinal is defined

as via RCAα = SPCsα, which turns out

to be a variety, that is to say, closed

under H, as well.

Let α be an ordinal. An algebra A ∈
CAα is locally finite, if the dimension set

of every element x ∈ A is finite. The di-

mension set of x, or ∆x for short, is the

set {i ∈ α : cix ̸= x}. Locally finite alge-

bras correspond to Tarski–Lindenbaum



algebras of (first order) formulas; in such

algebras the dimension set of (an equiv-

alence class of) a formula reflects the

number of (finite) set of free variables

in this formula. Tarski proved that ev-

ery locally finite α-dimensional cylindric

algebra is representable, i.e. isomorphic

to a subdirect product of set algebra

each of dimension α. Let Lfα denote

the class of locally finite cylindric alge-

bras.

Let RCAα stand for the class of iso-

morphic copies of subdirect products of

set algebras each of dimension α, or

briefly, the class of α dimensional repre-

sentable cylindric algebras. Then Tarski’s

theorem reads Lfα ⊆ RCAα. This rep-

resentation theorem is non-trivial; in fact

it is equivalent to Gödel’s celebrated

Completeness Theorem. Completeness

in the general case is a huge subject



that has provoked extensive research.

A natural generalization of Lfα is Dcα
when α is infinite; A ∈ Dcα iff α ∼ ∆x is

infinite for all x ∈ A.



Part 1: Counting models omiting

types for quantifier logics with in-

finitely many variables

Morley’s result extended to count-

ing models omitting types

Let us first talk about Omitting types

for the so-called rich languages where

there are infinitely many variables out-

side each (atomic) formula

We define certain cardinals; it is con-

sistent that such cardinal are uncount-

able. Throughout this talk we do not

assume the continuum hypothesis.

Definition .2. 1. A subset X ⊆ R is

meager if it is a countable union of nowhere

dense sets. Let covK be the least car-

dinal κ such that R can be covered by

κ many nowhere dense sets. Let p be



the least cardinal κ such that there are

κ many meager sets of R whose union

is not meager.

2. A Polish space is a topological

space that is metrizable by a complete

separable metric.

Examples of Polish spaces are R, the

Cantor set ω2 and the Baire space ωω.

These are called real spaces because

they are Baire isomorphic. Any second

countable compact Hausdorff space, like

the Stone space of a countable Boolean

algebra, is a Polish space ( a complete

separable metric space).

Theorem .3. 1. The cardinals covK and

p are uncountable cardinals, such that

p ≤ covK ≤ 2ω.

2. The cardinal covK is the least cardi-

nal such the Baire category theorem



for Polish spaces fails, and it is also

the largest for which Martin’s ax-

iom for countable Boolean algebras

holds.

3. If X is a Polish space, then it cannot

be covered by < covK many meager

sets. If λ < p, and (Ai : i < λ) is a

family of meager subsets of X, then∪
i∈λAi is meager.

Both cardinals covK and p have an ex-

tensive literature. It is consistent that

ω < p < covK ≤ 2ω so that the two cardi-

nals are generally different, but it is also

consistent that they are equal; equal-

ity holds for example in the Cohen real

model of Solovay and Cohen. In this

case, Martin’s axiom implies that they

are both equal to the continuum. Let A

be any Boolean algebra. The set of ul-

trafilters of A is denoted by U(A). The



Stone topology makes U(A) a compact

Hausdorff space. We denote this space

by A∗. Recall that the Stone topol-

ogy has as its basic open sets the sets

{Nx : x ∈ A} where

Nx = {F ∈ U(A) : x ∈ F}.

Let x ∈ A, Y ⊆ A and suppose that x =∑
Y. We say that an ultrafilter F ∈ U(A)

preserves Y ⇐⇒ whenever x ∈ F , then

y ∈ F for some y ∈ Y . Now let A ∈ Lfω.

For each i ∈ ω and x ∈ A let

Ui,x = {F ∈ U(A) : F preserves {sijx : j ∈ ω}}.

Then

Ui,x = {F ∈ U(A) : cix ∈ F ⇒ (∃j ∈ ω)sijx ∈ F}
= N−cix ∪

∪
j<ω

Nsijx
.

Let

H(A) =
∩

i∈ω,x∈A
Ui,x(A) ∩

∩
i ̸=j

N−dij .



It is clear that H(A) is a Gδ set in A∗.
For F ∈ U(A), let

repF (x) = {τ ∈ ωω : sAτ x ∈ F},

for all x ∈ A. Here for τ ∈ ωω, sAτ x by
definition is sAτ�∆xx. The latter is well
defined because |∆x| < ω. When a ∈ F ,
then repF is a representation of A such
that repF (a) ̸= 0. The following the-
orem establishes a one to one corre-
spondence between representations of
locally finite cylindric algebras and Henkin
ultrafilters. Csregω denotes the class of
regular set algebras; a a set algebra with
top element αU is such, if whenever
f, g ∈ αU, f � ∆x = g � ∆x, and f ∈ X

then g ∈ X. This reflects the meta-
logical property that if two assignments
agree on the free variables occurring in
a formula then both satisfy the formula
or none does.
Theorem .4. (Gabor Sagi) If F ∈ H(A),
then repF is a homomorphism from A



onto an element of Lfω ∩ Csregω with base

ω. Conversely, if h is a homomorphism

from A onto an element of Lfω ∩ Csregω
with base ω, then there is a unique F ∈
H(A) such that h = repF .

The next lemma is due to Shelah, and

will be used to show that in certain

cases uncountably many non-principal

types can be omitted.

Lemma .5. Suppose that T is a the-

ory, |T | = λ, λ regular, then there ex-

ist models Mi : i < λ2, each of car-

dinality λ, such that if i(1) ̸= i(2) <

χ, āi(l) ∈ Mi(l), l = 1,2,, tp(āl(1)) =

tp(āl(2)), then there are pi ⊆ tp(āl(i)),

|pi| < λ and pi ⊢ tp(āl(i)) (tp(ā) denotes

the complete type realized by the tuple

ā).

We shall use the algebraic counter-

part of the following corollary obtained



by restricting Shelah’s theorem to the

countable case:

Corollary .6. For any countable theory,

there is a family of < ω2 countable mod-

els that overlap only on principal types.

Theorem .7. Assume that κ < p. Let

α be a countable infinite ordinal.

1. Let A ∈ Dcα be countable. Let (Γi :

i ∈ κ) be a set of non-principal types

in A. Then there is a weak set alge-

bra B, that is, B has top element a

weak space, and a homomorphism

f : A → B such that for all i ∈ κ,∩
x∈Xi f(x) = ∅, and f(a) ̸= 0. If A

is simple, then p can be replaced by

covK.

2. If A ∈ Lfα, and (Γi : i ∈ κ) is a

family of finitary non-principal types



then there is a topological set alge-

bra B, that is, B has top element a

Cartesian square, and B ∈ Csregα ∩Lfα
together with a homomorphism f :

A → B such that
∩
x∈Xi f(x) = ∅,

and f(a) ̸= 0. If the family of given

types are ultrafilters then p can be

replaced by 2ω, so that < 2ω types

can be omitted.

Proof. For the first part, we have

(∀j < α)(∀x ∈ A)(cjx =
∑

i∈αr∆x

sjix.)

(1)

Now let V be the weak space ωω(Id) =

{s ∈ ωω : |{i ∈ ω : si ̸= i}| < ω}. For

each τ ∈ V for each i ∈ κ, let

Xi,τ = {sτx : x ∈ Xi}.

Here sτ is the unary operation as defined

corresponding to τ . For each τ ∈ V, sτ is



a complete Boolean endomorphism on

A by It thus follows that

(∀τ ∈ V )(∀i ∈ κ)
∏

AXi,τ = 0 (2)

Let S be the Stone space of the Boolean

part of A, and for x ∈ A, let Nx denote

the clopen set consisting of all Boolean

ultrafilters that contain x. Then from

(1) and (2) it follows that for x ∈ A,

j < β, i < κ and τ ∈ V , the sets

Gj,x = Ncjx\
∪

i/∈∆x

N
sjix

and Hi,τ =
∩
x∈Xi

Nsτ̄x

are closed nowhere dense sets in S. Also

each Hi,τ is closed and nowhere dense.

Let

G =
∪
j∈β

∪
x∈B

Gj,x and H =
∪
i∈κ

∪
τ∈V

Hi,τ.

By properties of p, H can be reduced to

a countable collection of nowhere dense

sets. By the Baire Category theorem

for compact Hausdorff spaces, we get



that H(A) = S ∼ H ∪ G is dense in S.

Let F be an ultrafilter in Na∩X. By the

very choice of F , it follows that a ∈ F

and we have the following.

(∀j < β)(∀x ∈ B)(cjx ∈ F

=⇒ (∃j /∈ ∆x)sijx ∈ F.)
(3)

and

(∀i < κ)(∀τ ∈ V )(∃x ∈ Xi)sτx /∈ F. (4)

Let V = ωωId) and let W be the quo-

tient of V as defined above. That is

W = V/Ē where τĒσ if dτ(i),σ(i) ∈ F for

all i ∈ ω. Define f by f(x) = {τ̄ ∈ W :

sτx ∈ F}, for x ∈ A. Then f is a homo-

morphism such that f(a) ̸= 0 and it can

be easily checked that
∩
f(Xi) = ∅ for

all i ∈ κ, hence the desired conclusion.

If A is simple, then by the properties of

covK, H(A) = S ∼ H ∪ G is non-empty.

Let F ∈ H(A) and let a ∈ F . The repre-

sentation built using such F as above,



call it f , has f(a) ̸= 0, By simplicity of

A, f is an injection, because kerf = {0},
since a /∈ kerf and by simplicity, either

kerf = {0} or kerf = A.

2. One proceeds exactly like in the

previous item, but using, as indicated

above, the fact that the operations sτ
for any τ ∈ ωω which are definable in

locally finite algebras, via sτx = sτ�∆xx,

for any x ∈ A. Furthermore, sτ � NrnA

is a complete Boolean endomorphism,

so that we guarantee that infimums are

preserved and the sets Hi,τ =
∩
x∈XiNsτ̄x

remain no-where dense in the Stone topol-

ogy. Now for the second part. Let

A ∈ Lfα, λ < 2ω and F = (Xi : i < λ) be

a family of maximal non-principal fini-

tary types, so that for each i < λ, there

exists n ∈ ω such that Xi ⊆ NrnA, and∏
Xi = 0; that is Xi is a Boolean ultra-

filter in NrnA. Then by Theorem .5, or



rather its direct algebraic counterpart,

there are ω2 representations such that if

X is an ultrafilter in NrnA (some n ∈ ω))

that is realized in two such represen-

tations, then X is necessarily principal.

That is there exist a family of count-

able locally finite set algebras, each with

countable base, call it (Bji : i < 2ω),

and isomorphisms fi : A → Bji such

that if X is an ultrafilter in NrnA, for

which there exists distinct k, l ∈ 2ω with∩
fl(X) ̸= ∅ and

∩
fj(X) ̸= ∅, then X

is principal, so that from Shelah’s lem-

masuch representations overlap only on

maximal principal types. Then there ex-

ists a family (Fi : i < 2ω) of Henkin

ultrafilters such that fi = hFi, and we

can assume that hFi is an CAα isomor-

phism as follows. Denote Fi by G. As-

sume, for contradiction, that there is

no representation (model) that omits

F. Then for all i < 2ω, there exists



F such that F is realized in Bji. Let

ψ : 2ω → ℘(F), be defined by ψ(i) =

{F : F is realized in Bji}. Then for all

i < 2ω, ψ(i) ̸= ∅. Furthermore, for i ̸=
k, ψ(i)∩ψ(k) = ∅, for if F ∈ ψ(i)∩ψ(k)
then it will be realized in Bji and Bjk,

and so it will be principal. This implies

that |F| = 2ω which is impossible.

Given an equivalence relation there are

theorems that assert that either the quo-

tient space is ‘small’ or else it contains

a copy of a specific ‘large’ set. Two

dichotomies showing this tendency are

known.

• The Silver Vaught Dichotomy as-

serts that there are either countably

many equivalence classes or there is



a perfect set of pairwise inequiva-

lent elements. For any continous

action by a Polish group G on a

Polish space X, the orbit equiva-

lence relation is conjectured to sat-

isfy the Silver Vaught Dichotomy.

This conjecture both implies and is

motivated by Vaught’s conjecture.

In Vaught’s conjecture is the par-

ticular case. when the group is the

symmetric group of permutations on

X, and the set X, is the set of non

isomorphic models of a theory with

domain ω. The relation E is just

the equivalence relation of isomor-

phism. In our case X was a Gδ sub-

set of the Stone space of a count-

able cylindric algebra.

• Another Dichotomy, called the Glimm

Effros dchotomy for an equivalence



relation E asserts that E contains

a copy of the Vitali equivalence re-

lation E0 (equivalently there exists

a non atomic ergodic measure for

E) or else there is a countable Borel

separating family for E. This dichotomy

originates with Glimm and Effros and

is motivated by questions about op-

erator algebra. Glimm proved that

the orbit space of a Polish group G

action satisfies the Glimm Effros Di-

chotomy if G is locally compact. Ef-

fros proved it for any Polish group

G, provded that the equivalence re-

lation is Fσ. There exists S∞ spaces

which violate the Glimm Effros di-

chotomy, but for the Silver Vaught

Dichotomy this is still an open ques-

tion. In all cases we consider, the

Glimm Effros dichotomy implies the

Silver Vaught dichotomy.



Theorem .8.Let G ⊆ S∞ be a cli group,

and let EG denote the corresponding or-

bit equivalence relation. Then |H(A)/EG| ≤
ω or |H(A)/EG| = 2ω

Proof. It is known that the number

of orbits of EG satisfies the so-called

Glimm-Effros Dichotomy. By known re-

sults in the literature on the topological

version of Vaught’s conjecture, we have

H(A)/EG is either at most countable or

H(A)/EG contains continuum many non

equivalent elements (i.e non-isomorphic

models).

It is known that the number of or-

bits of E = ES∞ does not satisfy the

Glimm Effros Dichotomy. We note that

cli groups cover all natural extensions of

abelian groups, like nilpotent and solv-

able groups. Now we give a topological



condition that implies Vaught’s conjec-

ture. Let everything be as above with G

denoting a Polish subgroup of S∞. Give

H(A)/EG the quotient topology and let

π : H(A) → H(A)/EG be the projection

map. π of course depends on G, we

sometimes denote it by πG to empha-

size the dependence.



Lemma .9. π is open.

Proof. To show that π is open it is enough

to show for arbitrary a ∈ A that π−1(π(Na))

is open. For,

π−1(π(Na)) = {F ∈ H(A) : (∃F ′ ∈ Na)

(F, F ′) ∈ E}
= {F ∈ H(A) : (∃F ′ ∈ Na)(∃ρ ∈ G)

s+ρ F
′ = F}

= {F ∈ H(A) : (∃F ′ ∈ Na)(∃ρ ∈ G)

F ′ = s+
ρ−1F}

= {F ∈ H(A) : (∃ρ ∈ G)s+
ρ−1F ∈ Na}

= {F ∈ H(A) : (∃ρ ∈ G)a ∈ s+
ρ−1F}

= {F ∈ H(A) : (∃ρ ∈ G)s+ρ a ∈ F}
=

∪
ρ∈G

N
s+ρ a

Theorem .10. If π is closed, then Vaught’s

conjecture holds.



Proof. We have H(A) is Borel subset of

A∗, the Stone space of A, and H(A)/EG
is a continuous image of H(A). Because

π is open, H(A)/EG is second count-

able. Now, since H(A) is metrizable,

it is normal. Since π is closed, open,

continuous, and surjective, so H(A)/EG
is also normal, hence regular. Thus

H(A)/EG can be embedded in Rω (like

in the proof of Urysohn’s metrization

Theorem). If H(A)/EG is uncountable,

then being analytic (the continuous im-

age under a map between two Polish

spaces of a Borel set), it has the power

of the continuum.

Unfortunately, π can’t be closed when

G = S∞ (or G sufficiently large as we

shall see) and A is simple (this is the

case when our theory T is complete).

Indeed, if it was closed, then as has

just been shown, H(A)/E is Haussdorf.



A well known fact says that: when the

quotient map is open, H(A)/E is Haus-

dorf iff E is closed. We show that when

A is simple, then E is not closed. For,

assume towards a contradiction that E

is closed, that is ∼ E is open. Let

(F, F ′) /∈ E. Then for some a ∈ F,

b ∈ F ′, Na × Nb ∩ E = ∅, i.e., for all

τ ∈ S∞, a.s
+
τ b = 0. This last situation

is of course impossible because one can

choose τ so that ∆a ∩ ∆s+τ b = ∅. Here

we we used the fact that when A is sim-

ple and ∆x ∩∆y = ∅, then x.y ̸= 0.



An algebraic proof to Morley’s the-

orem endowed with OTT

We next give a new proof of Morley’s

theorem; we also count the number of

models omitting a given family of types.

Theorem .11. Suppose T is a first or-

der complete theory in a countable lan-

guage with equality.

1. (Morley) If T has more than ω1 count-

able models, then it has 2ω count-

able models. The same statement

holds for theories not necessarily com-

plete, in countable languages with

or without equality.

2. If (Γi : i < ω) be a family of non-

isolated types, then the number of



non isomorphic countable models,
omitting this family, is either ω, ω1
or ω2

Proof. Let T be a first order theory in
a countable language with equality, and
let A = FmT . Then S∞ is a Polish group
with respect to composition of func-
tions and the topology it inherits from
the Baire space ωω. Consider the map
J : S∞×H(A) −→ H(A) defined by J(ρ, F ) =
s+ρ F for all ρ ∈ S∞, F ∈ H(A). Then J

is a well defined action of S∞ on H(A).
Also J is a continuous map from S∞ ×
H(A) (with the product topology) to
H(A) because for an arbitrary a ∈ A,

J−1(Na∩H(A)) =
∪

τ∈S∞

(
{µ−1 : µ ∈ S∞, µ|∆a

= τ |∆a} × [N
s+τ a

∩H(A)].

It follows that the the orbit equivalence
relation is analytic. By Burgess’ The-
orem if there are more than ω1 orbits,



then there are 2ω orbits. But the num-
ber of orbits here is exactly the num-
ber of non-isomorphic countably infinite
models of T . This completes the proof.
For the part on omittung types, set Homit =
H(FmT )∩

∩
i∈ω,τ∈W

∪
φ∈ΓiN−s+τ (φ/≡T )

, where

W = {τ ∈ ωω : |i : τ(i) ̸= i| < ω}.
Clearly, lHomit is Gδ, so it is Polish. For
the remaining part one uses locally fi-
nite QAωs instead of Lfωs.

Example .12. (i) Let T be a countable
theory. Then the number of non iso-
morphic models is equal to the number
of models omitting a given a set of < λ

many types are the same
⇐⇒ |H(FmT )| > |

∪
i∈λ,τ∈W

∩
φ∈ΓiNs+τ (φ/≡T )

|.
The next example shows that this may
fail to happen: Consider non standard
models of arithmetic. N is an atomic
model, which means that the neat n-
reduct of the locally finite cylindric alge-
bra FmT based on T = Th(N) is atomic



for each n. For each n ∈ ω, let Γn
be the set of co-atoms in the neat n-

reduct. These are non-principal types

and a model M omits them ⇐⇒ it is

atomic, hence it is isomorphic to N be-

cause atomic models are unique. But

Peano arithmetic is unstable, so it has
ω2 many non-isomorphic countable mod-

els (non-standard models of arithmetic).

Another example exhibiting the same

phenomena: Let T be the theory of al-

gebraically closed fields of characterstic

zero. Then T is ω stable and it has

countably many non-isomorphic mod-

els; for each α ≤ ω, there is a model of

transcendence degree α over the ratio-

nals. Take the types as above. Iin this

case the all subalgebras of the n-neat

reducts are atomic. Then the the field

of algebraic number is the only count-

able model omitting this family of types.

This is an atomic model. This theory



has also another countable ω-saturated

model, which is that of transcendence

degee ω.

(ii) There is a somewhat amusing The-

orem of Vaught’s that says that a count-

able theory cannot have exactly two mod-

els. We show that this is not the case

when we require that the constructed

odels omit a given family of non-principal

types. Take the language L = {cn : n ∈
ω}. Then a model M of T is determined

by how many extra elements it has, i.e

by |{b ∈ M : b ̸= cMn }|. So T is ω1 catego-

rial and since T has only infinite mod-

els it is complete. Also T has countably

many non isomorphic models, Mα with α

extra elements for α ≤ ω. Consider the

m type Γ =
∧
i ̸=j<m{vi ̸= vj}∪{v0 ̸= cn :

n ∈ ω} ∪ {v1 ̸= cn : n ∈ ω} . . . {vm−1 ̸=
cn : n ∈ ω}. Then Γ is non-principal

and it is omitted by exactly m models



namely M0,M1, . . .Mm−1. This can be

generalized for complete strongly mini-

mal theories which have countable mod-

els of dimension α, α ≤ ω.

(iii) We show that there is a theory

having exactly ω1 models omitting con-

tinuum many types. Take the first or-

der countable theory in the language

{<, c0, c1, . . . } where < is a binary re-

lation symbols and the c′i’s (i ≤ ω) are

constants. Let T be the L theory which

states that < is a linear order and that

ci ̸= cj for i ̸= j. Take Γ1 = {v1 ̸=
ci : i ∈ ω} and for every injective f ∈
ωω, let Γf = {cf(i) > cf(i+1) : i ∈ ω}.
Consider the set of non-principal types

G = {Γ1,Γf : f ∈ ωω}. Then a model M

omits G ⇐⇒ it is a countable well or-

der. The family G is uncountable. Mak-

ing this family countable would violate

Vaught’s conjecture in Lω1,ω. Indded let



T be a countable theory and {Γi : i < ω}
be a family of non-principal types omit-

ted by exactly ω1 models. Then the

Lω1,ω sentence
∧
T∧

∧
n∈ω(¬(∃v̄n)

∧
ϕ∈Γn ϕ(v̄n))

violates Vaught’s conjecture; for it has

ω1 countable models.



Vaught’s conjecture holding for dis-

tinguishible ordinary models and pair-

wise non-isomorphic models

Distinguishable models

We define an equivalence relation on

ultrafilters that turns out to be Borel.

This implies that it satisfies the Glimm-

Effros dichotomy, and so has either count-

ably many or else continuum many equiv-

alence classes. The equivalence rela-

tion we introduce corresponds to a non-

trivial equivalence relation between mod-

els which is weaker than isomorphism

and stronger than elementary equiva-

lence.

Definition .13 (Notation). Let F be an

ultrafilter of a locally finite (cylindric or

quasi-polyadic) algebra A. For a ∈ A

define

SatF(a) = {t|∆a : t ∈ ωω, s+t a ∈ F}.



Throughout, A is countable. We de-

fine an equivalence relation E on the

space H(A)) that turns out to be Borel.

Definition .14. Let E be the following
equivalence relation on H(A) :

E = {(F0,F1) : (∀a ∈ A)(|SatF0
(a)| = |SatF1

(a)|)}.

We say that F0,F1 ∈ H(A) are dis-

tinguishable if (F0,F1) /∈ E. We also

say that two models of a theory T are

distinguishable if their corresponding ul-

trafilters in H(CA(T ) = FmT ) are distin-

guishable. That is, two models are dis-

tinguishable if they disagree in the num-

ber of realizations they have for some

formula. Then E is Borel in the prod-

uct space H(A)×H(A).

If X be a Polish space and E a Borel

equivalence relation on X. We call E



smooth if there is a Borel map f from

X to the Cantor space ω2 such that

xEy ⇔ f(x) = f(y).

Note that E is smooth iff E admits a

countable Borel separating family, i.e.,

a family (An) of Borel sets such that

xEy ⇔ ∀n(x ∈ An ↔ y ∈ An).

Clearly, if E is smooth then it is Borel

(but the converse is not true). A stan-

dard example of a non-smooth Borel

equivalence relation is the following: On

2N, let E0 be defined by

xE0y ⇔ ∃n∀m ≥ n(x(m) = y(m)).

We say that the equivalence relation

E, on a Polish space X, satisfies the

Glimm-Effros Dichotomy if either it is

smooth or else it contains a copy of E0.

Clearly, for an equivalence relation E,

E satisfies the Glimm-Effros Dichotomy



implies that E satisfies the Silver-Vaught

Dichotomy, that is, E has either count-

ably many classes or else perfectly many

classes (X has a perfect subset of non-

equivalent elements).

Theorem .15 (Harrington-Kechris-Lou-

veau). Let X be a Polish space and E a

Borel equivalence relation on X. Then

E satisfies the Glimm-Effros Dichotomy.

It follows directly from this theorem,

replacing X with H(A) that E satisfies

the Glimm-Effros dichotomy and so has

either countably many equivalence classes

or else perfectly many.

Corollary .16. Let T be a first order

theory in a countable language (with or

without equality). If T has an uncount-

able set of countable models that are

pairwise distinguishable, then actually it

has such a set of size 2ℵ0.



Vaught’s conjecture holds when count-

ing weak models in rich languages

A rich language is one for which out-

side any atomic formula thet are in-

finitely many variables–and the rest is

like first order logic. Recall that rich

languages (corresponding to Dcα) en-

joy an omitting types theorem; for < p

many non-principal types, and the types

can contain infinitely many variables (un-

like first order logic). However, the mod-

els that omit a countable set of non-

principal types is only a weak model,

and it can be proved that there are cases,

where it has to be a weak model.

Example .17. Let T be the theory of

dense linear order without endpoints.

Then T is complete. Let Γ(x0, x1 . . .)

be the set

{x1 < x0, x2 < x1, x3 < x2 . . .}.



(Here there is no bound on free vari-

ables.) A model M omits Γ if and only

if M is a well ordering. But T has no

well ordered models, so no model of T

omits Γ. However T locally omits Γ be-

cause if ϕ(x0, . . . xn−1) is consistent with

T , then ϕ ∧ ¬xn+2 < xn+1 is consistent

with T. Note that Γ can be omitted in

a weak model.

But first a some definitions

Definition .18. Let A and B be set al-

gebras with bases U and W respectively.

Then A and B are base isomorphic if

there exists a bijection f : U → W such

that f̄ : A → B defined by f̄(X) = {y ∈
αW : f−1◦y ∈ x} is an isomorphism from

A to B

Definition .19. An algebra A is hered-

itary atomic, if each of its subalgebras

is atomic.



Finite Boolean algebras are hereditary
atomic of course, but there are infinite
hereditary atomic Boolean algebras; any
Boolean algebra generated by by its atoms
is hereditary atomic, for example the fi-
nite co-finite algebra on any set. An
algebra that is infinite and complete is
not hereditary atomic, whether atomic
or not.
Example .20. Hereditary atomic alge-
bras arise naturally as the Tarski-Lindenbaum
algebras of certain countable first order
theories, that abound. If T is a count-
able complete first order theory which
has an an ω-saturated model, then for
each n ∈ ω, the Tarski-Lindenbuam Boolean
algebra Fmn/T is hereditary atomic. Here
Fmn is the set of formulas using only n
variables. For example Th(Q, <) is such
with Q the ω saturated model.

A well known model-theoretic result
is that T has an ω saturated model iff



T has countably many n types for all

n. Algebraically n-types are just ultrafil-

ters in Fmn/T . And indeed, what char-

acterizes hereditary atomic algebras is

that the base of their Stone space, that

is the set of all ultrafilters, is at most

countable.

Lemma .21.Let B be a countable Boolean

algebra. If B is hereditary atomic then

the number of ultrafilters is at most

countable; of course they are finite if B

is finite. If B is not hereditary atomic

the it has 2ω ultrafilters.

Our next theorem is the natural ex-

tension of Vaught’s theorem to variable

rich languages. However, we address

only languages with finitely many rela-

tion symbols. (Our algebras are finitely

generated, and being simple, this is equiv-

alent to that it is generated by a single

element.)



Theorem .22. Let A ∈ Dcα be count-

able simple and finitely generated. Then

the number of non-base isomorphic rep-

resentations of A is 2ω.

Proof. Let V = αα(Id) and let A be as

in the hypothesis. Then A cannot be

atomic, least hereditary atomic. By .21,

it has 2ω ultrafilters.

For an ultrafilter F , let hF (a) = {τ ∈
V : sτa ∈ F}, a ∈ A. Then hF ̸= 0,

indeed Id ∈ hF (a) for any a ∈ F , hence

hF is an injection, by simplicity of A.

Now hF : A → ℘(V ); all the hF ’s have

the same target algebra. We claim that

hF (A) is base isomorphic to hG(A) iff

there exists a finite bijection σ ∈ V such

that sσF = G. We set out to confirm

our claim. Let σ : α → α be a finite

bijection such that sσF = G. Define

Ψ : hF (A) → ℘(V ) by Ψ(X) = {τ ∈ V :



σ−1 ◦ τ ∈ X}. Then, by definition, Ψ

is a base isomorphism. We show that

Ψ(hF (a)) = hG(a) for all a ∈ A. Let

a ∈ A. Let X = {τ ∈ V : sτa ∈ F}. Let

Z = Ψ(X). Then

Z = {τ ∈ V : σ−1 ◦ τ ∈ X}
= {τ ∈ V : sσ−1◦τ(a) ∈ F}
= {τ ∈ V : sτa ∈ sσF}
= {τ ∈ V : sτa ∈ G}.
= hG(a)

Conversely, assume that σ̄ establishes a

base isomorphism between hF (A) and

hG(A). Then σ̄ ◦ hF = hG. We show

that if a ∈ F , then sσa ∈ G. Let a ∈ F ,

and let X = hF (a). Then, we have

¯σ ◦ hF (a) = σ(X)

= {y ∈ V : σ−1 ◦ y ∈ hF (X)}
= {y ∈ V : sσ−1◦ya ∈ F}
= hG(a)

Now we have hG(a) = {y ∈ V : sya ∈



G}. But a ∈ F . Hence σ−1 ∈ hG(a) so

sσ−1a ∈ G, and hence a ∈ sσG.

Define the equivalence relation ∼ on

the set of ultrafilters by F ∼ G, if there

exists a finite permutation σ such that

F = sσG. Then any equivalence class

is countable, and so we have ω2 many

classes, which correspond to the non

base isomorphic representations of A.

Theorem .23. Let T be a countable

theory in a rich language, with only finitely

many relation symbols, and Γ = {Γi :

i ∈ p} be non isolated types. Then T

has 2ω weak models that omit Γ. If T

is complete we can replace p by covK.



Part 2: Omiting types theorems

(OTTs) for finite variable fragments–

both positive and negative results

We recall that a class K of Boolean al-

gebras with operators (BAOs) is atom–

canonical if whenever A ∈ K is atomic

and completey additive, then its com-

pletion, namely, the complex algebra of

its atom structure, in symbols CmAtA, is

also in K. This subtle construction may

be applied to any two classes L ⊆ K

of completely additive BAOs. One takes

an atomic A /∈ K (usually but not al-

ways finite), blows it up, by splitting one

or more of its atoms each to infinitely

many subatoms, obtaining an (infinite)

countable atomic Bb(A) ∈ L, such that

A is blurred in Bb(A) meaning that A

does not embed in Bb(A), but A embeds

in the completion of Bb(A), namely,

CmAtBb(A).



Then any class M say, between L and

K that is closed under forming subal-

gebras will not be atom–canonical, for

Bb(A) ∈ L(⊆ M), but CmAtBb(A) /∈ K(⊇
M) because A /∈ M and SM = M. We

say, in this case, that L is not atom–

canonical with respect to K. This method

is applied to K = SRaCAl, l ≥ 5 and

L = RRA and to K = RRA and L = RRA∩
RaCAk for all k ≥ 3 in, and will applied

below to K = SNrnCAn+k, k ≥ 3 and

L = RCAn, where Ra denote the oper-

ator of forming relation algebra reducts

(applied to classes) of CAs, respectively.

Let 2 < n < m ≤ ω. The notion

of an algebra A having signature CAn

possesing an m-square representation is

defined for relation algebras by Hirsch

and Hodkinson and can be easily ex-

tended to CAns. An m-square represen-

tation only locally classic. Given 2 < l <



m ≤ ω, an m-square representation is
l-square but the converse may fail dra-
matically. An ω-square rpresentation–
the limiting case-is an ordinary repre-
sentation, such a representation is m-
square for each finite m. Roughly, if
we zoom in by a movable window to an
m-square represention, there will come
a point determined by the parameter
m, were we mistake this locally clas-
sic represenation for a genuine ordinary
Tarskian one. However, when we zoom
out ’contradictions’ reappear.

Theorem .24.Let 2 < n < ω and t(n) =
n(n+1)/2+1. The variety RCAn is not-
atom canonical with respect to SNrnCAt(n).
In fact, there is a countable atomic sim-
ple A ∈ RCAn such that CmAtA does not
have an t(n)-square,a fortiori t(n)- flat,
representation.

Consider the following statement: There
exists a countable, complete and atomic



Ln first order theory T in a signature

L, meaning that the Tarski Lindenbuam

quotient algebra FmT is atomic, such

that the type Γ consisting of co-atoms

FmT is realizable in everym–square model,

but Γ cannot be isolated using ≤ l vari-

ables, where n ≤ l < m ≤ ω. A co-atom

of FmT is the negation of an atom in

FmT . An m-square model of T is an

m-square representation of FmT .

The last statement denoted by Ψ(l,m),

is short for Vaught’s Theorem (VT) fails

at (the parameters) l andm. Let VT(l,m)

stand for VT holds at l and m, so that

by definition Ψ(l,m) ⇐⇒ ¬VT(l,m).

We also include l = ω in the equation

by defining VT(ω, ω) as VT holds for

Lω,ω: Atomic countable first order theo-

ries have atomic countable models. It is



well known that VT(ω, ω) is a direct con-

sequence of the Orey-Henkin OTT. Re-

call that VT(ω, ω) is just Vaught’s theo-

rem, namely, countable atomic theories

have atomic countable models.

Let 2 < n ≤ l < m ≤ ω. In VT(l,m),

while the parameter lmeasures how close

we are to Lω,ω, m measures the ‘degree’

of squareness of permitted models. Us-

ing elementary calculas terminology one

can view
∑
l→∞VT(l, ω) = VT(ω, ω) al-

gebraically using ultraproducts as fol-

lows. Fix 2 < n < ω. For each 2 <

n ≤ l < ω, let Rl be the finite Maddux

algebra Ef(l)(2,3), as defined on p.83

in §5 in the proof of Theorem 5.1 in

“Omitting types for finite variable frag-

ments and complete representations of

algebras. H. Andréka, I. Németi, and

T. Sayed Ahmed–Journal of Sym-

bolic Logic 73(1) (2008) p.65-89”



with l–blur (Jl, El) as defined in Defini-

tion 3.1 in op.cit and f(l) ≥ l as speci-

fied in Lemma 5.1 in op.cit (denoted by

k therein). Let Rl = Bb(Rl, Jl, El) ∈ RRA

where Rl is the relation algebra having

atom structure denoted At in p. 73 in

op.cit when the blown up and blurred

algebra denoted Rl happens to be the fi-

nite Maddux algebra Ef(l)(2,3) and let

Al = NrnBbl(Rl, Jl, El) ∈ RCAn as de-

fined in Top of p.80 in op.cit(with Rl =

Ef(l)(2,3)). Then (AtRl : l ∈ ω ∼ n),

and (AtAl : l ∈ ω ∼ n) are sequences

of weakly representable atom structures

that are not strongly representable with

a completely representable ultraproduct.

Let LCAn denote the class of CAns

satisfying the Lyndon conditions which

is the elementary closure of the class of

completely representable CAns.

We immediately get:



Corollary .25. (Monk, Maddux, Biro,

Hirsch and Hodkinson) Let 2 < n < ω.

Then the set of equations using only

one variable that holds in each of the

varieties RCAn and RRA, together with

any finite first order definable expansion

of each, cannot be derived from any fi-

nite set of equations valid in the variety.

Furthermore, LCAn is not finitely axiom-

atizable.

Positive OTTs for Ln with standard

‘unguarded’ semantics

Unless otherwise specified, n will de-

note a finite ordinal > 2. Now we turn

to proving omitting types theorems for

certain (not all) Ln theories. But first

a definition:

Definition .26. Let A ∈ RCAn and let

λ be a cardinal.



1. If X = (Xi : i < λ) is family of sub-

sets of A, we say that X is omit-

ted in C ∈ Crsn, if there exists an

isomorphism f : A → C such that∩
f(Xi) = ∅ for all i < λ. When we

want to stress the role of f , we say

that X is omitted in C via f .

2. If X ⊆ A and
∏
X = 0, then we refer

to X as a non-principal type of A.

Observe that A ∈ RCAn is completely

representable ⇐⇒ A is atomic, and the

single non-principal type of co-atoms can

be omitted in a Gsn.

In the Theorem n < ω:

Theorem .27. Let A ∈ ScNrnCAω be

countable. Let λ < 2ω and let X =

(Xi : i < λ) be a family of non-principal

types of A. Then the following hold:



1. If A ∈ NrnCAω and the Xis are non–

principal ultrafilters, then X can be

omitted in a Gsn.

2. Every subfamily of X of cardinality

< p can be omitted in a Gsn; in par-

ticular, every countable subfamily of

X can be omitted in a Gsn,

3. If A is simple, then every subfamily

of X of cardinality < covK can be

omitted in a Csn,

4. It is consistent, but not provable (in

ZFC), that X can be omitted in a

Gsn,

5. If A ∈ NrnCAω and |X| < p, then X

can be omitted ⇐⇒ every count-

able subfamily of X can be omitted.



If A is simple, we can replace p by

covK.

Definition .28.Let A ∈ CAβ and α < β,

then the α neat reduct of A is the alge-

bra obtained from A by discarding op-

erations in β ∼ α and restricting the re-

maining operations to the set consisting

only of α dimensional elements. An el-

ement is α dimensional if its dimension

set, ∆x = {i ∈ β : cix ̸= x} is contained

in α. Such an algebra is denoted by

NrαA.

We show (algebraically) that the max-

imality condition cannot be removed when

we consider uncountable theories.

Theorem .29. Let κ be an infinite car-

dinal. Then there exists an atomless

C ∈ CAω such that for all 2 < n < ω,

|NrnC| = 2κ, NrnC ∈ LCAn(= Eln), but

NrnC is not completely representable.



Thus the non–principal type of co–atoms

of NrnC cannot be omitted. In particu-

lar, the condition of maximality cannot

be removed.

Since NrnCAω ⊆ LCAn = ElCRCAn
Corollary .30. (Hirsch Hodkinson) For

2 < n < ω, the classes CRCAn and CRRA

are not elementary.

We have proved through OTT the-

orems in a somewhat short path–

that the class of representable al-

gebras of finite dimension > 2 is not

finitely axiomatizable, while the class

of completely representable algebras

of the same dimension is not first

order definable–two cornerstones of

the theory of cylindric algebras that

took dozens (if not perhaps hun-

dreds of publications) to prove that



can be traced back to Monk’s paper

on non finite axiomatizability of rela-

tion algebras using Lyndon algebras

in the mid sixties of the last cen-

tury, to his 1969 JSl paper on CAs,

refined further by Maddux, Andréka,

Hirsch, Hodkinson, Sági, Sayed Ahmed

and others..

.Also positive results obtained by

circumventing such negative results

are obtained by Sain, Németi and

Sayed Amed for first order with and

without equality using finitely pre-

sented semigroups, an idea that can

be traced to Craig.

I will stop here..unless..



More non-elementary classes

Definition .31. Fix finite n > 2 and as-

sume that A ∈ CAn is atomic.

(1) An n–dimensional atomic network

on A is a map N : n∆ → AtA, where ∆

is a non–empty set of nodes, denoted

by (N), satisfying the following consis-

tency conditions for all i < j < n:

• If x̄ ∈ n(N) then N(x̄) ≤ dij ⇐⇒
xi = xj,

• If x̄, ȳ ∈ n(N), i < n and x̄ ≡i ȳ, then
N(x̄) ≤ ciN(ȳ).

For n–dimensional atomic networks M

and N , we write M ≡i N ⇐⇒ M(ȳ) =

N(ȳ) for all ȳ ∈ n(n ∼ {i}).



(2) Assume thatm, k ≤ ω. The atomic

game Gmk (AtA), or simply Gmk , is the

game played on atomic networks of A

usingm nodes and having k rounds where

is offered only one move, namely, a cylin-

drifier move: Suppose that we are at

round t > 0. Then picks a previously

played network Nt ((Nt) ⊆ m), i < n,

a ∈ AtA, x ∈ n(Nt), such that Nt(x̄) ≤
cia. For her response, has to deliver a

networkM such that (M) ⊆ m, M ≡i N ,

and there is ȳ ∈ n(M) that satisfies ȳ ≡i
x̄ and M(ȳ) = a. We write Gk(AtA), or

simply Gk, for Gmk (AtA) if m ≥ ω.

(3) The ω–rounded game Gm(AtA) or

simply Gm is like the game Gmω (AtA) ex-

cept that has the option to reuse the

m nodes in play.

Lemma .32. Let 2 < n < m ≤ ω.



1. If A ∈ CAn is finite and A has an m-

square representation, then has a

winning strategy in Gm(AtA)

2. If A ∈ ScNrnCAm, then has a win-

ning strategy in Gm(AtA).

In our proof we use a variation on a

rainbow constructions. Fix 2 < n <

ω. Given relational structures G (the

greens) and R (the reds) the rainbow

atom structure of a CAn consists of

equivalence classes of surjective maps

a : n→ ∆, where ∆ is a coloured graph.

A coloured graph is a complete graph

labelled by the rainbow colours, the greens

g ∈ G, reds r ∈ R, and whites; and some

n − 1 tuples are labelled by ‘shades of

yellow’. In coloured graphs certain tri-

angles are not allowed for example all

green triangles are forbidden. A red



triple (rij, rj′k′, ri∗k∗) i, j, j
′, k′, i∗, k∗ ∈ R is

not allowed, unless i = i∗, j = j′ and k′ =
k∗, in which case we say that the red in-

dices match. The equivalence relation

relates two such maps ⇐⇒ they essen-

tially define the same graph. We let [a]

denote the equivalence class containing

a. For 2 < n < ω, we use the graph

version of the usual atomic ω–rounded

game Gmω (α) with m nodes, played on

atomic networks of the CAn atom struc-

ture α. The game Gm(β) where β is a

CAn atom structure is like Gmω (AtA) ex-

cept that has the option to reuse the

m nodes in play. We use the ‘graph

versions’ of these games. The typical

winning strategy for is bombading with

cones having green tints and a common

base until she runs out of consistent

triples of reds. The (complex) rainbow

algebra based on G and R is denoted by

AG,R. The dimension n will always be

clear from context.



Lemma .33.Let α be a countable atom

structure. There is a k rounded atomic

game with k ≤ ω (played on atomic

networks) such that if has a winning

strategy in Hω(α), then any algebra

having atom structure α is completely

representable and there exists a com-

plete D ∈ RCAω such that Cmα ∼= NrnD

and α ∼= AtNrnD. In particular, Cmα ∈
NrnCAω and α ∈ AtNrnCAω.

Lemma .34.Any class K between SdNrnCAω∩
CRCAn and ScNrnCAn+3 is not elemen-

tary

Proof. (1) has a winning strategy in

Gn+3(AtC) for a rainbow-like algebra

C:

Take the a rainbow–like CAn, call it C,

based on the ordered structure Z and N.
The reds R is the set {rij : i < j < ω(=



N)} and the green colours used consti-

tute the set {gi : 1 ≤ i < n − 1} ∪ {gi0 :

i ∈ Z}. In complete coloured graphs

the forbidden triples are like the usual

rainbow constructions based on Z and

N, but now the triple (gi0, g
j
0, rkl) is also

forbidden if {(i, k), (j, l)} is not an or-

der preserving partial function from Z →
N. It can be shown that has a win-

ning strategy in the graph version of

the game Gn+3(AtC) played on coloured

graphs. The rough idea here, is that,

as is the case with winning strategy’s

of in rainbow constructions, bombards

with cones having distinct green tints

demanding a red label from to appexes

of succesive cones. The number of nodes

are limited but has the option to re-use

them, so this process will not end after

finitely many rounds. The added order

preserving condition relating two greens

and a red, forces to choose red labels,



one of whose indices form a decreasing

sequence in N. In ω many rounds forces

a win, so C /∈ ScNrnCAn+3.

(2) has a winning strategy in Hk(AtC)

for all k < ω:

It can be shown that for k < ω, has

a winning strategy in Gk(AtCZ,N) inspite

of the newly forbidden triple consisting

of two greens and one red, synchro-

nized by an order preserving function.

This plainly makes her choices more re-

stricted. But we can go further. It can

be shown with some more effort (but

not much more) that, in fact, has a

winning strategy in even the stronger

game Hk(AtCZ,N) for all k < ω.

(3) Finishing the proof: All games

used are deterministic. For each k < ω,

let σk describe the winning strategy of



Hk(α). Let C = Tmα. Let D be a non–

principal ultrapower of C. Then has a

winning strategy σ in Hω(AtD) — es-

sentially she uses σk in the k’th compo-

nent of the ultraproduct so that at each

round of Hω(AtD), is still winning in co–

finitely many components, this suffices

to show she has still not lost. Now one

can use an elementary chain argument

to construct countable elementary sub-

algebras C = A0 ≼ A1 ≼ . . . ≼ . . .D in

the following way. One defines Ai+1 to

be a countable elementary subalgebra

of D containing Ai and all elements of

D that σ selects in a play of Hω(AtD)

in which only chooses elements from

Ai. Now let B =
∪
i<ω Ai. This is a

countable elementary subalgebra of D,

hence necessarily atomic, and has a

winning strategy in Hω(AtB). . So by

te previous Lemma (using AtB in place

of α), we get that CmAtB ∈ NrnCAω.



Since B ⊆d CmAtB, then B ∈ SdNrnCAω

and by Lemma .33, we also have that

B ∈ CRCAn. But has a wining strategy

in Gm(AtB), C /∈ ScNrnCAm. To final-

ize the proof, let K be as given. Then

B ≡ C, B ∈ K(⊆ SdNrnCAω∩CRCAn), but
C /∈ ScNrnCAn+3(⊇ K) giving that K is

not elementary.



Theorem .35. 1. (Hirsch and Hodkin-

son using Erdos probabablistic graphs):

There is a finite k ≥ 2, such that

for all m ≥ n+ k the class of frames

Str(SNrnCAm) = {: Cm ∈ SNrnCAm}
is not elementary. An entirely anal-

ogous result holds for RAs,

2. Let O ∈ {Sc,Sd, I} and k ≥ 3. Then

the class of frames Kk = {: Cm ∈
ONrnCAn+k} is not elementary.


