Spiralling Domains in Dimension 2

Jasmin Raissy

Institut de Mathématiques de Bordeaux

(Joint work in progress with Xavier Buff)

June 29, 2023

Goal: understand the parabolic basin \mathscr{B}_0 of $F: \mathbb{C}^n \to \mathbb{C}^n$ such that F(0) = 0 and $D_0F = \mathrm{id}$

$$\mathscr{B}_0 = \{ z \in \mathbb{C}^n \mid F^{\circ m}(z) \xrightarrow[m \to +\infty]{} 0 \}$$

Parabolic domain: connected component P of $\mathring{\mathcal{B}}_0$, $F(P) \subset P$.

Theorem (Buff-R., in progress)

There exist $F: \mathbb{C}^2 \to \mathbb{C}^2$ polynomial maps tangent to the identity at the origin with infinitely many parabolic domains of spiralling type.

• $f:(\mathbb{C},0)\to(\mathbb{C},0)$ tangent to the identity and $f\neq \mathrm{id}$:

$$f(z) = z + az^{k+1} + O(z^{k+2})$$
 with $a \in \mathbb{C} \setminus \{0\}$.

• $f:(\mathbb{C},0)\to(\mathbb{C},0)$ tangent to the identity and $f\neq \mathrm{id}$:

$$f(z) = z + az^{k+1} + O(z^{k+2})$$
 with $a \in \mathbb{C} \setminus \{0\}$.

f is topologically conjugate to the time-1 flow of $z^{k+1} \frac{\partial}{\partial z}$.

$$k = 3$$

Setting:

•
$$\mathbf{z} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^2$$

- $F(z) = z + v(z) + O(||z||^{k+2}), k \ge 1$
- $v: \mathbb{C}^2 \to \mathbb{C}^2$ homogeneous map of degree k+1.

Setting:

•
$$\mathbf{z} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^2$$

- $F(z) = z + v(z) + O(||z||^{k+2}), k \ge 1$
- $v : \mathbb{C}^2 \to \mathbb{C}^2$ homogeneous map of degree k + 1.

Idea: Look at $\vec{v}(\mathbf{z})$

- search for preferred directions for the dynamics
- understand orbits of f using real time trajectories of $\vec{v}(\mathbf{z})$.

$$F(\mathbf{z}) = \mathbf{z} + v(\mathbf{z}) + O\left(\|\mathbf{z}\|^{k+2}\right), \quad F^{\circ n}(\mathbf{z}) = \mathbf{z}_n$$

Fact: $\mathbf{z}_n \to \mathbf{0}$ tangentially to $[\mathbf{t}] \in \mathbb{P}^1(\mathbb{C}) \Longrightarrow \exists \lambda \in \mathbb{C} \text{ s.t. } \mathbf{v}(\mathbf{t}) = \lambda \mathbf{t}$.

- [t] $\in \mathbb{P}^1(\mathbb{C})$ is a characteristic direction if $v(\mathbf{t}) = \lambda \mathbf{t}$. [t] is non-degenerate if $\lambda \neq 0$, degenerate if $\lambda = 0$.
- v is dicritical if all directions are characteristic, non-dicritical otherwise.

$$F(\mathbf{z}) = \mathbf{z} + v(\mathbf{z}) + O\left(\|\mathbf{z}\|^{k+2}\right), \quad F^{\circ n}(\mathbf{z}) = \mathbf{z}_n$$

Fact: $\mathbf{z}_n \to \mathbf{0}$ tangentially to $[\mathbf{t}] \in \mathbb{P}^1(\mathbb{C}) \Longrightarrow \exists \lambda \in \mathbb{C} \text{ s.t. } \mathbf{v}(\mathbf{t}) = \lambda \mathbf{t}$.

- [t] $\in \mathbb{P}^1(\mathbb{C})$ is a characteristic direction if $v(\mathbf{t}) = \lambda \mathbf{t}$. [t] is non-degenerate if $\lambda \neq 0$, degenerate if $\lambda = 0$.
- v is dicritical if all directions are characteristic, non-dicritical otherwise.

From now on: v non-dicritical

Maps tangent to the identity in dimension 2

Assumptions:

• $\vec{\mathbf{v}}$ is a homogeneous vector field of degree k+1 on \mathbb{C}^2 :

$$\vec{v} := U\partial_x + V\partial_y$$

with U and V homogeneous polynomials of degree k + 1;

$$\Phi := xV - yU$$

vanishes on k + 2 characteristic directions, counting multiplicities;

 $F(\mathbf{x}) = \mathbf{x} + \vec{\mathbf{v}}(\mathbf{x}) + O(\|\mathbf{x}\|^{k+2}).$

Observation:

• Near **0**, orbits of F shadow real-time trajectories of $\vec{\mathbf{v}}$.

Theorem (Écalle, Hakim, Abate, ..., López-Hernanz, Rosas)

For any F, tangentially to each characteristic direction, there is either a curve of fixed points, or at least one parabolic petal.

$$F(x, y) = (x + y^2 + x^3, y + x^2)$$

Proposition (Écalle, Hakim)

Existence of *F* which have *parabolic domains* on which orbits converge to **0** tangentially to a characteristic direction.

$$F(x,y) = (x + x^2, y + y^2)$$

If an orbit converges to the origin, does it converge tangentially to a characteristic direction?

If an orbit converges to the origin, does it converge tangentially to a characteristic direction?

Proposition (Rivi, Rong)

Existence of *F* which have *parabolic domains* on which orbits converge to **0** *spiralling* around a characteristic direction.

Proposition (Rivi, Rong)

Existence of *F* which have *parabolic domains* on which orbits converge to **0** *spiralling* around a characteristic direction.

 $F(x, y) = (x - x^2, y + y^2 + 4x^2)$ Example by Astorg and Boc-Thaler

Proposition (Rivi, Rong)

Existence of *F* which have *parabolic domains* on which orbits converge to **0** *spiralling* around a characteristic direction.

 $F(x, y) = (x - x^2, y + y^2 + 4x^2)$ Example by Astorg and Boc-Thaler

Spiralling domains in dimension 2

Theorem (Buff-R., in progress)

For $a \in \mathbb{R} \setminus \{\mathbf{0}\}$, the polynomial endomorphism $F_a : \mathbb{C}^2 \to \mathbb{C}^2$ defined by

$$F_a\left(\begin{array}{c}x\\y\end{array}\right)=\left(\begin{array}{c}x\\y\end{array}\right)+\left(\begin{array}{c}y^2\\x^2\end{array}\right)+a\left(\begin{array}{c}x(x-y)\\y(x-y)\end{array}\right)$$

has infinitely many spiralling domains contained in distinct invariant Fatou components.

Tools

- homogeneous vector fields;
- affine surfaces;
- triangular billiards.

The family F_a

$$F_a\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + a\begin{pmatrix} x(x-y) \\ y(x-y) \end{pmatrix}$$

Trajectories for
$$\vec{v} = y^2 \frac{\partial}{\partial x} + x^2 \frac{\partial}{\partial y}$$

- \vec{v} is a Hamiltonian vector field
- Complex trajectories of \vec{v} :

$$\mathscr{S}_{\kappa} := \left\{ \mathbf{z} \in \mathbb{C}^2 \mid \Phi(\mathbf{z}) := x^3 - y^3 = \kappa \right\} \text{ with } \kappa \in \mathbb{C}.$$

- $\mathscr{S}_0 = \{y = x\} \cup \{y = jx\} \cup \{y = j^2x\} \text{ with } j = e^{\frac{2\pi i}{3}}$
- $\mathbf{0} \notin \overline{\mathscr{S}}_{\kappa}$ for $\kappa \neq 0$, and so real trajectories of $\vec{\mathbf{v}}$ in \mathscr{S}_{κ} do not converge to $\mathbf{0}$.
- For $\kappa \neq 0$, $\mathscr{S}_{\kappa} \simeq \text{Torus} \setminus \{3 \text{ points}\}$, on which \vec{v} is a translation vector field.
- If $\kappa = (p + jq)^3 r$, with $(p, q) \in \mathbb{Z}^2 \setminus \{\mathbf{0}\}$ and $r \in \mathbb{R} \setminus \{\mathbf{0}\}$, then the real trajectories of \vec{v} are periodic, that is closed.

Dynamics of homogeneous vector fields

 \bullet A trajectory for $\vec{\boldsymbol{v}}$ is a solution of the differential equation

$$\dot{m{\gamma}} = \vec{m{v}} \circ m{\gamma}.$$

- Complex-time trajectories are Riemann surfaces which cover CP¹ minus the characteristic directions.
- What does the projection to CP¹ of a real-time trajectory look-like?

Dynamics of homogeneous vector fields

 \bullet A trajectory for $\vec{\boldsymbol{v}}$ is a solution of the differential equation

$$\dot{oldsymbol{\gamma}} = ec{oldsymbol{v}} \circ oldsymbol{\gamma}.$$

- Complex-time trajectories are Riemann surfaces which cover CP¹ minus the characteristic directions.
- What does the projection to CP¹ of a real-time trajectory look-like?

Proposition (Abate-Tovena)

We may equip \mathbb{CP}^1 with the structure of an affine surface $\mathbf{S}_{\vec{v}}$ so that the projection to $\mathbf{S}_{\vec{v}}$ of real-time trajectories of \vec{v} are geodesics.

Affine surfaces and geodesics

Definition (Affine surface)

An affine surface **S** is a Riemann surface whose change of charts are affine maps $z \mapsto \lambda z + \mu$ with $\lambda \in \mathbb{C} \setminus \{0\}$ and $\mu \in \mathbb{C}$.

Example: **C** is the complex plane with its canonical affine structure.

Definition (Affine map)

A map between affine surfaces is an *affine map* if its expression in affine charts is of the form $z \mapsto \lambda z + \mu$.

Definition (Geodesic)

A curve $\delta: I \to \mathbf{S}$ defined on an interval $I \subseteq \mathbb{R}$ is a *geodesic* if δ is the restriction of an affine map $\varphi: U \to \mathbf{S}$ defined on an open subset $U \subset \mathbf{C}$.

An example

• The dilation plane $\widetilde{\mathbf{C}}$ with underlying Riemann surface \mathbb{C} , whose affine charts are the restrictions of

$$\exp(z): \widetilde{\mathbf{C}} \to \mathbf{C} \setminus \{0\}.$$

A family of parallel geodesics in $\tilde{\mathbf{C}}$.

Nonlinearity

• The nonlinearity of a holomorphic map $\varphi: \mathbf{S} \to \mathbf{T}$ with non vanishing derivative is the 1-form \mathcal{N}_{φ} defined on \mathbf{S} by

$$\mathcal{N}_{arphi} := \mathrm{d}(\log arphi') = rac{\mathrm{d}arphi'}{arphi'}.$$

- $\mathcal{N}_{\varphi} = 0$ if and only if φ is an affine map.
- If $\varphi : \mathbf{S} \to \mathbf{T}$ and $\psi : \mathbf{T} \to \mathbf{U}$ are holomorphic maps, then

$$\mathcal{N}_{\psi \circ \varphi} = \mathcal{N}_{\varphi} + \varphi^*(\mathcal{N}_{\psi}).$$

Affine surface of a homogeneous vector field

- $\vec{\mathbf{v}} = U\partial_{\mathbf{x}} + V\partial_{\mathbf{y}}$ is homogeneous of degree k + 1.
- $z: \mathbb{CP}^1 \ni [x:y] \mapsto \frac{x}{y} \in \widehat{\mathbb{C}}.$
- $f\left(\frac{x}{y}\right) = \frac{U(x,y)}{V(x,y)}.$

Proposition

The nonlinearity of $z: \mathbf{S}_{\vec{\mathbf{v}}} \to \mathbf{C}$ is

$$\nu := \left(\frac{p'(z)}{p(z)} - \frac{k}{z - f(z)}\right) dz.$$

Affine surface of a homogeneous vector field

- Singularities of ν are characteristic directions.
- Assume there is a simple pole and let ρ be the residue.

Theorem (Écalle, Hakim)

If ν has a simple pole and $\operatorname{Re}(\rho) > 1$, there is a parabolic domain on which orbits converge to $\mathbf{0}$ tangentially to the characteristic direction.

Affine surface of a homogeneous vector field

- Singularities of ν are characteristic directions.
- Assume there is a simple pole and let ρ be the residue.

Proposition (Rivi, Rong)

If ν has a simple pole and $\mathrm{Re}(\rho)=1$, there is a parabolic domain on which orbits converge to $\mathbf{0}$ spiralling around the characteristic direction.

Closed geodesics

• A geodesic $\delta: I \to \mathbf{S}$ is *closed* if there exists $\lambda \in (0, +\infty)$ and $t_0 < t_1$ in I such that

$$\delta(t_1) = \delta(t_0)$$
 and $\dot{\delta}(t_1) = \lambda \dot{\delta}(t_0)$.

• Such a geodesic is *attracting* if $\lambda \in (0, 1)$.

Spiralling domains

 If an affine surface contains an attracting closed geodesic, it contains an attracting dilation cylinder foliated by attracting closed geodesic.

Proposition (Buff-R., in progress)

Assume $F(\mathbf{x}) = \mathbf{x} + \vec{\mathbf{v}}(\mathbf{x})$ with $\vec{\mathbf{v}}$ homogeneous. If $\mathbf{S}_{\vec{\mathbf{v}}}$ contains an attracting dilation cylinder \mathcal{C} , then F has a spiralling domain in which orbits converge to $\mathbf{0}$, spiralling towards an attracting closed geodesic of \mathcal{C} .

Proposition (Buff-R.)

Assume $a \in \mathbb{R} \setminus \{0\}$ and

$$\vec{\mathbf{v}} := (y^2 + a\mathbf{x}(\mathbf{x} - \mathbf{y}))\partial_{\mathbf{x}} + (\mathbf{x}^2 + a\mathbf{y}(\mathbf{x} - \mathbf{y}))\partial_{\mathbf{y}}.$$

Then, $\mathbf{S}_{\vec{v}}$ contains infinitely many non homotopic attracting dilation cylinders.

Polygonal models

If

$$\vec{\boldsymbol{v}}=\boldsymbol{y}^2\partial_{\boldsymbol{x}}+\boldsymbol{x}^2\partial_{\boldsymbol{y}},$$

the affine surface $\textbf{S}_{\vec{\boldsymbol{v}}}$ may be obtained by gluing equilateral triangles.

If

$$\vec{\boldsymbol{v}}:=\big(y^2+ax(x-y)\big)\partial_x+\big(x^2+ay(x-y)\big)\partial_y.$$

If

$$\vec{\boldsymbol{v}}:=\big(y^2+ax(x-y)\big)\partial_x+\big(x^2+ay(x-y)\big)\partial_y.$$

If

$$\vec{\boldsymbol{v}}:=\big(y^2+ax(x-y)\big)\partial_x+\big(x^2+ay(x-y)\big)\partial_y.$$

If

$$\vec{\boldsymbol{v}}:=\left(y^2+ax(x-y)\right)\partial_x+\left(x^2+ay(x-y)\right)\partial_y.$$

If

$$\vec{\boldsymbol{v}}:=\big(y^2+ax(x-y)\big)\partial_x+\big(x^2+ay(x-y)\big)\partial_y.$$

If

$$\vec{\boldsymbol{v}}:=\left(y^2+ax(x-y)\right)\partial_x+\left(x^2+ay(x-y)\right)\partial_y.$$

If

$$\vec{\boldsymbol{v}}:=\left(y^2+ax(x-y)\right)\partial_x+\left(x^2+ay(x-y)\right)\partial_y.$$

One attracting cylinder

A second attracting cylinder

A third attracting cylinder

Three attracting cylinders

Happy Birthday László!