Spiralling Domains in Dimension 2

Jasmin Raissy
Institut de Mathématiques de Bordeaux
(Joint work in progress with Xavier Buff)

June 29, 2023

Goal: understand the parabolic basin \mathscr{B}_{0} of $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that $F(0)=0$ and $D_{0} F=$ id

$$
\mathscr{B}_{0}=\left\{z \in \mathbb{C}^{n} \mid F^{\circ m}(z) \xrightarrow[m \rightarrow+\infty]{ } 0\right\}
$$

Parabolic domain: connected component P of $\mathscr{\mathscr { B }}_{0}, F(P) \subset P$.

Theorem (Buff-R., in progress)
There exist $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ polynomial maps tangent to the identity at the origin with infinitely many parabolic domains of spiralling type.

Dimension 1

- $f:(\mathbb{C}, 0) \rightarrow(\mathbb{C}, 0)$ tangent to the identity and $f \neq \mathrm{id}$:

$$
f(z)=z+a z^{k+1}+O\left(z^{k+2}\right) \text { with } \quad a \in \mathbb{C} \backslash\{0\} .
$$

$$
k=3
$$

Dimension 1

- $f:(\mathbb{C}, 0) \rightarrow(\mathbb{C}, 0)$ tangent to the identity and $f \neq \mathrm{id}$:

$$
f(z)=z+a z^{k+1}+O\left(z^{k+2}\right) \quad \text { with } \quad a \in \mathbb{C} \backslash\{0\} .
$$

f is topologically conjugate to the time-1 flow of $z^{k+1} \frac{\partial}{\partial z}$.

$$
k=3
$$

Dimension 2

Setting:

- $\mathbf{z}=\binom{x}{y} \in \mathbb{C}^{2}$
- $F(\mathbf{z})=\mathbf{z}+v(\mathbf{z})+\mathrm{O}\left(\|\mathbf{z}\|^{k+2}\right), k \geq 1$
- $v: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ homogeneous map of degree $k+1$.

Dimension 2

Setting:

- $\mathbf{z}=\binom{x}{y} \in \mathbb{C}^{2}$
- $F(\mathbf{z})=\mathbf{z}+v(\mathbf{z})+\mathrm{O}\left(\|\mathbf{z}\|^{k+2}\right), k \geq 1$
- $v: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ homogeneous map of degree $k+1$.

Idea: Look at $\vec{v}(\mathbf{z})$

- search for preferred directions for the dynamics
- understand orbits of f using real time trajectories of $\vec{v}(\mathbf{z})$.

$$
F(\mathbf{z})=\mathbf{z}+v(\mathbf{z})+\mathrm{O}\left(\|\mathbf{z}\|^{k+2}\right), \quad F^{\circ n}(\mathbf{z})=\mathbf{z}_{n}
$$

Fact: $\mathbf{z}_{n} \rightarrow \mathbf{0}$ tangentially to $[\mathbf{t}] \in \mathbb{P}^{1}(\mathbb{C}) \Longrightarrow \exists \lambda \in \mathbb{C}$ s.t. $v(\mathbf{t})=\lambda \mathbf{t}$.

- $[\mathbf{t}] \in \mathbb{P}^{1}(\mathbb{C})$ is a characteristic direction if $v(\mathbf{t})=\lambda \mathbf{t}$. $[\mathbf{t}]$ is non-degenerate if $\lambda \neq 0$, degenerate if $\lambda=0$.
- v is dicritical if all directions are characteristic, non-dicritical otherwise.

$$
F(\mathbf{z})=\mathbf{z}+v(\mathbf{z})+\mathrm{O}\left(\|\mathbf{z}\|^{k+2}\right), \quad F^{\circ n}(\mathbf{z})=\mathbf{z}_{n}
$$

Fact: $\mathbf{z}_{n} \rightarrow \mathbf{0}$ tangentially to $[\mathbf{t}] \in \mathbb{P}^{1}(\mathbb{C}) \Longrightarrow \exists \lambda \in \mathbb{C}$ s.t. $v(\mathbf{t})=\lambda \mathbf{t}$.

- $[\mathbf{t}] \in \mathbb{P}^{1}(\mathbb{C})$ is a characteristic direction if $v(\mathbf{t})=\lambda \mathbf{t}$. $[\mathbf{t}]$ is non-degenerate if $\lambda \neq 0$, degenerate if $\lambda=0$.
- v is dicritical if all directions are characteristic, non-dicritical otherwise.

From now on: v non-dicritical

Maps tangent to the identity in dimension 2

Assumptions:

- $\overrightarrow{\boldsymbol{v}}$ is a homogeneous vector field of degree $k+1$ on \mathbb{C}^{2} :

$$
\overrightarrow{\boldsymbol{v}}:=U \partial_{x}+V \partial_{y}
$$

with U and V homogeneous polynomials of degree $k+1$;
-

$$
\Phi:=x V-y U
$$

vanishes on $k+2$ characteristic directions, counting multiplicities;
-

$$
F(x)=\boldsymbol{x}+\overrightarrow{\boldsymbol{v}}(\boldsymbol{x})+\mathrm{O}\left(\|\boldsymbol{x}\|^{k+2}\right)
$$

Observation:

- Near $\mathbf{0}$, orbits of F shadow real-time trajectories of $\overrightarrow{\boldsymbol{v}}$.

Known results

Theorem (Écalle, Hakim, Abate, ..., López-Hernanz, Rosas)

For any F, tangentially to each characteristic direction, there is either a curve of fixed points, or at least one parabolic petal.

Known results

Proposition (Écalle, Hakim)

Existence of F which have parabolic domains on which orbits converge to $\mathbf{0}$ tangentially to a characteristic direction.

Known results

If an orbit converges to the origin, does it converge tangentially to a characteristic direction?

Known results

If an orbit converges to the origin, does it converge tangentially to a characteristic direction?

Proposition (Rivi, Rong)

Existence of F which have parabolic domains on which orbits converge to $\mathbf{0}$ spiralling around a characteristic direction.

Known results

Proposition (Rivi, Rong)

Existence of F which have parabolic domains on which orbits converge to $\mathbf{0}$ spiralling around a characteristic direction.

Example by Astorg and Boc-Thaler

Known results

Proposition (Rivi, Rong)

Existence of F which have parabolic domains on which orbits converge to $\mathbf{0}$ spiralling around a characteristic direction.

Example by Astorg and Boc-Thaler

Spiralling domains in dimension 2

Theorem (Buff-R., in progress)

For $a \in \mathbb{R} \backslash\{\mathbf{0}\}$, the polynomial endomorphism $F_{a}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by

$$
F_{a}\binom{x}{y}=\binom{x}{y}+\binom{y^{2}}{x^{2}}+a\binom{x(x-y)}{y(x-y)}
$$

has infinitely many spiralling domains contained in distinct invariant Fatou components.

Tools

- homogeneous vector fields;
- affine surfaces;
- triangular billiards.

The family F_{a}

$$
F_{a}\binom{x}{y}=\binom{x}{y}+\binom{y^{2}}{x^{2}}+a\binom{x(x-y)}{y(x-y)}
$$

The dynamics of F_{a} for $a=0$

Trajectories for $\vec{v}=y^{2} \frac{\partial}{\partial x}+x^{2} \frac{\partial}{\partial y}$

- \vec{v} is a Hamiltonian vector field
- Complex trajectories of \vec{v} :

$$
\mathscr{S}_{\kappa}:=\left\{\mathbf{z} \in \mathbb{C}^{2} \mid \Phi(\mathbf{z}):=x^{3}-y^{3}=\kappa\right\} \text { with } \kappa \in \mathbb{C} .
$$

- $\mathscr{S}_{0}=\{y=x\} \cup\{y=j x\} \cup\left\{y=j^{2} x\right\}$ with $j=e^{\frac{2 \pi i}{3}}$
- $\mathbf{0} \notin \overline{\mathscr{S}}_{\kappa}$ for $\kappa \neq 0$, and so real trajectories of \vec{v} in \mathscr{S}_{κ} do not converge to 0 .
- For $\kappa \neq 0, \mathscr{S}_{\kappa} \simeq$ Torus $\backslash\{3$ points $\}$, on which \vec{v} is a translation vector field.
- If $\kappa=(p+j q)^{3} r$, with $(p, q) \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}$ and $r \in \mathbb{R} \backslash\{0\}$, then the real trajectories of \vec{v} are periodic, that is closed.

The dynamics of F_{a} for $a=0.1$

The dynamics of F_{a} for $a=0.1$

The dynamics of F_{a} for $a=0.1$

The dynamics of F_{a} for $a=0.1$

The dynamics of F_{a} for $a=0.1$

Dynamics of homogeneous vector fields

- A trajectory for $\overrightarrow{\boldsymbol{v}}$ is a solution of the differential equation

$$
\dot{\gamma}=\overrightarrow{\boldsymbol{v}} \circ \gamma
$$

- Complex-time trajectories are Riemann surfaces which cover $\mathbb{C P}^{1}$ minus the characteristic directions.
- What does the projection to $\mathbb{C P}^{1}$ of a real-time trajectory look-like?

Dynamics of homogeneous vector fields

- A trajectory for $\overrightarrow{\boldsymbol{v}}$ is a solution of the differential equation

$$
\dot{\gamma}=\overrightarrow{\boldsymbol{v}} \circ \gamma
$$

- Complex-time trajectories are Riemann surfaces which cover $\mathbb{C P}^{1}$ minus the characteristic directions.
- What does the projection to $\mathbb{C P}^{1}$ of a real-time trajectory look-like?

Proposition (Abate-Tovena)

We may equip $\mathbb{C P}^{1}$ with the structure of an affine surface $\mathbf{S}_{\vec{v}}$ so that the projection to $\mathbf{S}_{\vec{v}}$ of real-time trajectories of $\overrightarrow{\boldsymbol{v}}$ are geodesics.

Affine surfaces and geodesics

Definition (Affine surface)

An affine surface \mathbf{S} is a Riemann surface whose change of charts are affine maps $z \mapsto \lambda z+\mu$ with $\lambda \in \mathbb{C} \backslash\{0\}$ and $\mu \in \mathbb{C}$.

Example: \mathbf{C} is the complex plane with its canonical affine structure.

Definition (Affine map)

A map between affine surfaces is an affine map if its expression in affine charts is of the form $z \mapsto \lambda z+\mu$.

Definition (Geodesic)

A curve $\delta: I \rightarrow \mathbf{S}$ defined on an interval $I \subseteq \mathbb{R}$ is a geodesic if δ is the restriction of an affine map $\varphi: U \rightarrow \mathbf{S}$ defined on an open subset $U \subseteq \mathbf{C}$.

An example

- The dilation plane $\widetilde{\mathbf{C}}$ with underlying Riemann surface \mathbb{C}, whose affine charts are the restrictions of

$$
\exp (z): \widetilde{\mathbf{C}} \rightarrow \mathbf{C} \backslash\{0\} .
$$

A family of parallel geodesics in $\widetilde{\mathbf{C}}$.

Nonlinearity

- The nonlinearity of a holomorphic map $\varphi: \mathbf{S} \rightarrow \mathbf{T}$ with non vanishing derivative is the 1 -form \mathcal{N}_{φ} defined on \mathbf{S} by

$$
\mathcal{N}_{\varphi}:=\mathrm{d}\left(\log \varphi^{\prime}\right)=\frac{\mathrm{d} \varphi^{\prime}}{\varphi^{\prime}} .
$$

- $\mathcal{N}_{\varphi}=0$ if and only if φ is an affine map.
- If $\varphi: \mathbf{S} \rightarrow \mathbf{T}$ and $\psi: \mathbf{T} \rightarrow \mathbf{U}$ are holomorphic maps, then

$$
\mathcal{N}_{\psi \circ \varphi}=\mathcal{N}_{\varphi}+\varphi^{*}\left(\mathcal{N}_{\psi}\right) .
$$

Affine surface of a homogeneous vector field

- $\overrightarrow{\boldsymbol{v}}=U \partial_{x}+V \partial_{y}$ is homogeneous of degree $k+1$.
- $z: \mathbb{C P}^{1} \ni[x: y] \mapsto \frac{x}{y} \in \widehat{\mathbb{C}}$.
- $f\left(\frac{x}{y}\right)=\frac{U(x, y)}{V(x, y)}$.
- $p\left(\frac{x}{y}\right)=\frac{x U(x, y)-y V(x, y)}{y^{k+2}}$.

Proposition

The nonlinearity of $z: \mathbf{S}_{\vec{v}} \rightarrow \mathbf{C}$ is

$$
\nu:=\left(\frac{p^{\prime}(z)}{p(z)}-\frac{k}{z-f(z)}\right) \mathrm{d} z
$$

Affine surface of a homogeneous vector field

- Singularities of ν are characteristic directions.
- Assume there is a simple pole and let ρ be the residue.

$\operatorname{Re}(\rho)>1$

$\operatorname{Re}(\rho)<1$

Theorem (Écalle, Hakim)

If ν has a simple pole and $\operatorname{Re}(\rho)>1$, there is a parabolic domain on which orbits converge to 0 tangentially to the characteristic direction.

Affine surface of a homogeneous vector field

- Singularities of ν are characteristic directions.
- Assume there is a simple pole and let ρ be the residue.

$$
\rho=1-2 \mathrm{i}
$$

$$
\rho=1-4 \mathrm{i}
$$

Proposition (Rivi,Rong)

If ν has a simple pole and $\operatorname{Re}(\rho)=1$, there is a parabolic domain on which orbits converge to 0 spiralling around the characteristic direction.

Closed geodesics

- A geodesic $\delta: I \rightarrow \mathbf{S}$ is closed if there exists $\lambda \in(0,+\infty)$ and $t_{0}<t_{1}$ in $/$ such that

$$
\delta\left(t_{1}\right)=\delta\left(t_{0}\right) \quad \text { and } \quad \dot{\delta}\left(t_{1}\right)=\lambda \dot{\delta}\left(t_{0}\right)
$$

- Such a geodesic is attracting if $\lambda \in(0,1)$.

Spiralling domains

- If an affine surface contains an attracting closed geodesic, it contains an attracting dilation cylinder foliated by attracting closed geodesic.

Proposition (Buff-R., in progress)

Assume $F(\boldsymbol{x})=\boldsymbol{x}+\overrightarrow{\boldsymbol{v}}(\boldsymbol{x})$ with $\overrightarrow{\boldsymbol{v}}$ homogeneous. If $\mathbf{S}_{\vec{v}}$ contains an attracting dilation cylinder \mathcal{C}, then F has a spiralling domain in which orbits converge to $\mathbf{0}$, spiralling towards an attracting closed geodesic of \mathcal{C}.

Proposition (Buff-R.)

Assume $a \in \mathbb{R} \backslash\{0\}$ and

$$
\overrightarrow{\boldsymbol{v}}:=\left(y^{2}+a x(x-y)\right) \partial_{x}+\left(x^{2}+a y(x-y)\right) \partial_{y}
$$

Then, $\mathbf{S}_{\vec{v}}$ contains infinitely many non homotopic attracting dilation cylinders.

Polygonal models

- If

$$
\overrightarrow{\boldsymbol{v}}=y^{2} \partial_{x}+x^{2} \partial_{y},
$$

the affine surface $\mathbf{S}_{\vec{v}}$ may be obtained by gluing equilateral triangles.

Polygonal models

- If

$$
\overrightarrow{\boldsymbol{v}}:=\left(y^{2}+a x(x-y)\right) \partial_{x}+\left(x^{2}+a y(x-y)\right) \partial_{y}
$$

the affine surface $\mathbf{S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

Polygonal models

- If

$$
\overrightarrow{\boldsymbol{v}}:=\left(y^{2}+a x(x-y)\right) \partial_{x}+\left(x^{2}+a y(x-y)\right) \partial_{y} .
$$

the affine surface $\mathbf{S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

Polygonal models

- If

$$
\overrightarrow{\boldsymbol{v}}:=\left(y^{2}+a x(x-y)\right) \partial_{x}+\left(x^{2}+a y(x-y)\right) \partial_{y} .
$$

the affine surface $\mathbf{S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

Polygonal models

- If

$$
\overrightarrow{\boldsymbol{v}}:=\left(y^{2}+a x(x-y)\right) \partial_{x}+\left(x^{2}+a y(x-y)\right) \partial_{y} .
$$

the affine surface $\mathbf{S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

Polygonal models

- If

$$
\overrightarrow{\boldsymbol{v}}:=\left(y^{2}+a x(x-y)\right) \partial_{x}+\left(x^{2}+a y(x-y)\right) \partial_{y} .
$$

the affine surface $\mathbf{S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

Polygonal models

- If

$$
\overrightarrow{\boldsymbol{v}}:=\left(y^{2}+a x(x-y)\right) \partial_{x}+\left(x^{2}+a y(x-y)\right) \partial_{y} .
$$

the affine surface $\mathbf{S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

Polygonal models

- If

$$
\overrightarrow{\boldsymbol{v}}:=\left(y^{2}+a x(x-y)\right) \partial_{x}+\left(x^{2}+a y(x-y)\right) \partial_{y} .
$$

the affine surface $\mathbf{S}_{\vec{v}}$ may be obtained by gluing isoscele triangles.

One attracting cylinder

A second attracting cylinder

A third attracting cylinder

Three attracting cylinders

Happy Birthday László!

