The Cauchy-Riemann Equations on the Hartogs Triangles

Mei-Chi Shaw

University of Notre Dame

Budapest Conference June 26, 2023

・ロト ・四ト ・ヨト ・ヨト 三日

D The $\overline{\partial}$ -problem and Dolbeault cohomology groups

- **2** L^2 theory for $\overline{\partial}$ on domains in \mathbb{C}^n
 - 3 Function theory and $\overline{\partial}$ on the Hartogs triangle
- 4 The Cauchy-Riemann Equations in Complex Projective Spaces
- **(5)** The $\overline{\partial}$ operator on Hartogs triangles in \mathbb{CP}^2

1 The $\overline{\partial}$ -problem and Dolbeault cohomology groups

- 2) L^2 theory for $\overline{\partial}$ on domains in \mathbb{C}^n
- 3 Function theory and $\overline{\partial}$ on the Hartogs triangle
- 4 The Cauchy-Riemann Equations in Complex Projective Spaces
- 5 The $\overline{\partial}$ operator on Hartogs triangles in \mathbb{CP}^2

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \ge 2$. Given a C^{∞} -smooth (p,q)-form g such that $\overline{\partial}g = 0$, find a smooth (p,q-1)-form u such that $\overline{\partial}u = g$. (1)

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\Omega)) \in \mathcal{C}^{\infty}_{p,q}(\Omega)\}$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on ker(\overline{\Delta}) and range(\overline{\Delta}).

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \ge 2$. Given a C^{∞} -smooth (p,q)-form g such that $\overline{\partial}g = 0$, find a smooth (p,q-1)-form u such that $\overline{\partial}u = g$. (1)

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\Omega)) \in \mathcal{C}^{\infty}_{p,q}(\Omega)\}$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on ker(\overline{\Delta}) and range(\overline{\Delta}).

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \ge 2$. Given a C^{∞} -smooth (p,q)-form g such that $\overline{\partial}g = 0$, find a smooth (p,q-1)-form u such that

$$\overline{\partial}u = g. \tag{1}$$

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\overline{\Omega}))$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on ker(\overlap) and range(\overlap).

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \ge 2$. Given a C^{∞} -smooth (p,q)-form g such that $\overline{\partial}g = 0$, find a smooth (p,q-1)-form u such that

$$\overline{\partial}u = g. \tag{1}$$

Dolbeault Cohomology

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\overline{\Omega})$$

• Obstruction to solving the $\overline{\partial}$ -problem on Ω .

 Natural topology arising as quotients of Fréchet topologies on ker(∂) and range(∂).

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \ge 2$. Given a C^{∞} -smooth (p,q)-form g such that $\overline{\partial}g = 0$, find a smooth (p,q-1)-form u such that

$$\overline{\partial}u = g. \tag{1}$$

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\overline{\Omega})$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on ker(∂) and range(∂).
- This topology is Hausdorff iff range($\overline{\partial}$) is closed in $\mathcal{C}_{p,q}^{\infty}(\Omega)$

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \ge 2$. Given a C^{∞} -smooth (p,q)-form g such that $\overline{\partial}g = 0$, find a smooth (p,q-1)-form u such that

$$\overline{\partial}u = g. \tag{1}$$

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\overline{\Omega}))$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on ker(∂) and range(∂).

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \ge 2$. Given a C^{∞} -smooth (p,q)-form g such that $\overline{\partial}g = 0$, find a smooth (p,q-1)-form u such that

$$\overline{\partial}u = g. \tag{1}$$

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\overline{\Omega}))$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on ker(∂) and range(∂).

D The $\overline{\partial}$ -problem and Dolbeault cohomology groups

2 L^2 theory for $\overline{\partial}$ on domains in \mathbb{C}^n

3 Function theory and $\overline{\partial}$ on the Hartogs triangle

4 The Cauchy-Riemann Equations in Complex Projective Spaces

5 The $\overline{\partial}$ operator on Hartogs triangles in \mathbb{CP}^2

L^2 closure of unbounded operators

Two ways to close an unbounded operator in L^2

 (1) The (weak) maximal closure of ∂: Dom(∂) ⊆ L²_{p,q}(Ω) is the largest. Realize ∂ as a closed densely defined (maximal) operator

$$\overline{\partial}: L^2_{p,q}(\Omega) \to L^2_{p,q+1}(\Omega).$$

The L^2 -Dolbeault Coholomolgy is defined by

$$H_{L^2}^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: L^2_{p,q}(\Omega) \to L^2_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: L^2_{p,q-1}(\Omega) \to L^2_{p,q}(\Omega)\}}$$

• (2) The (strong) minimal closure of $\overline{\partial}$: Let $\overline{\partial}_c$ be the (strong) minimal closed L^2 extension of $\overline{\partial}$.

$$\overline{\partial}_c: L^2_{p,q}(\Omega) \to L^2_{p,q+1}(\Omega).$$

By this we mean that $f \in \text{Dom}(\overline{\partial}_c)$ if and only if there exists a sequence of compactly supported smooth forms f_{ν} such that $f_{\mu} \xrightarrow{}{} f_{\mu} \xrightarrow{}{} f_{\mu} \xrightarrow{}{} \partial f_{\mu}$

L^2 closure of unbounded operators

Two ways to close an unbounded operator in L^2

 (1) The (weak) maximal closure of ∂: Dom(∂) ⊆ L²_{p,q}(Ω) is the largest. Realize ∂ as a closed densely defined (maximal) operator

$$\overline{\partial}: L^2_{p,q}(\Omega) \to L^2_{p,q+1}(\Omega).$$

The L^2 -Dolbeault Coholomolgy is defined by

$$H_{L^2}^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: L^2_{p,q}(\Omega) \to L^2_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: L^2_{p,q-1}(\Omega) \to L^2_{p,q}(\Omega)\}}$$

• (2) The (strong) minimal closure of $\overline{\partial}$: Let $\overline{\partial}_c$ be the (strong) minimal closed L^2 extension of $\overline{\partial}$.

$$\overline{\partial}_c: L^2_{p,q}(\Omega) \to L^2_{p,q+1}(\Omega).$$

By this we mean that $f \in \text{Dom}(\overline{\partial}_c)$ if and only if there exists a sequence of compactly supported smooth forms f_{ν} such that $f_{\nu} \to f$ and $\overline{\partial} f_{\nu} \to \overline{\partial} f_{\ast, \circ}$

L^2 -approach to $\overline{\partial}$

Let Ω be a bounded domain in \mathbb{C}^n .

Another two ways to close an unbounded operator in L^2

- (3) The (strong) maximal closure of ∂ : C[∞]_{p,q}(Ω) → C[∞]_{p,q+1}(Ω). Let ∂_s : L²_{p,q}(Ω) → L²_{p,q+1}(Ω) be the strong maximal closed L² extension of ∂ on smooth forms in the L²-graph norm. We say that f ∈ Dom(∂_s) if and only if there exists a sequence of smooth forms f_ν ∈ C[∞]_{p,q}(Ω) such that f_ν → f and ∂f_ν → ∂f in L².
- (4) Solving ∂ with prescribed support: Let ∂_c : L²_{p,q}(Ω) → L²_{p,q+1}(Ω) be the weak minimal closed L² extension in the sense that f ∈ Dom(∂_c) if and only if ∂f = g in Cⁿ as distributions with compact support in Ω for some g ∈ L²_{p,q+1}(Ω) when f and g are extended as zero outside Ω.

L^2 -approach to $\overline{\partial}$

Let Ω be a bounded domain in \mathbb{C}^n .

Another two ways to close an unbounded operator in L^2

- (3) The (strong) maximal closure of ∂ : C[∞]_{p,q}(Ω) → C[∞]_{p,q+1}(Ω). Let ∂_s : L²_{p,q}(Ω) → L²_{p,q+1}(Ω) be the strong maximal closed L² extension of ∂ on smooth forms in the L²-graph norm. We say that f ∈ Dom(∂_s) if and only if there exists a sequence of smooth forms f_ν ∈ C[∞]_{p,q}(Ω) such that f_ν → f and ∂f_ν → ∂f in L².
- (4) Solving ∂ with prescribed support: Let ∂_c : L²_{p,q}(Ω) → L²_{p,q+1}(Ω) be the weak minimal closed L² extension in the sense that f ∈ Dom(∂_c) if and only if ∂f = g in Cⁿ as distributions with compact support in Ω for some g ∈ L²_{p,q+1}(Ω) when f and g are extended as zero outside Ω.

Let $\Box_{p,q}$ ($\overline{\partial}$ -Laplacian) be the closed self-adjoint densely defined (unbounded) operator :

$$\Box_{p,q} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}: L^2_{p,q}(\Omega) \to L^2_{p,q}(\Omega)$$

Suppose that the range $\Box_{p,q}$ closed. $L^2_{p,q}(\Omega) = \operatorname{Range}(\Box_{p,q}) \oplus \ker(\Box_{p,q})$. (\iff range of $\overline{\partial}$ is a closed subspace in $L^2_{p,q}(\Omega)$ and $L^2_{p,q+1}(\Omega)$.) $\mathcal{H}^{p,q}(\Omega) = \ker(\Box_{p,q})$. [the space of Harmonic (p,q)-forms]

- (Hodge Theorem) The space $H_{L^2}^{p,q}(\Omega)$ is isomorphic to the space of harmonic forms $\mathcal{H}^{p,q}(\Omega)$.
- The operator $\Box_{p,q}$ is invertible on $\mathcal{H}^{p,q}(\Omega)^{\perp}$ and its inverse is called the $\overline{\partial}$ Neumann operator $N_{p,q}$.
- The $\overline{\partial}$ problem can be solved with L^2 -estimates: If $g \perp \ker(\overline{\partial}^*)$, then there is u such that $\overline{\partial}u = g$, and $||u||_{L^2} \leq C ||g||_{L^2}$.

Let $\Box_{p,q}$ ($\overline{\partial}$ -Laplacian) be the closed self-adjoint densely defined (unbounded) operator :

$$\Box_{p,q} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial} : L^2_{p,q}(\Omega) \to L^2_{p,q}(\Omega)$$

Suppose that the range $\Box_{p,q}$ closed. $L^2_{p,q}(\Omega) = \operatorname{Range}(\Box_{p,q}) \oplus \ker(\Box_{p,q})$. (\iff range of $\overline{\partial}$ is a closed subspace in $L^2_{p,q}(\Omega)$ and $L^2_{p,q+1}(\Omega)$.) $\mathcal{H}^{p,q}(\Omega) = \ker(\Box_{p,q})$, [the space of Harmonic (p,q)-forms]

Consequences of the closed range property of ∂

- (Hodge Theorem) The space H^{p,q}_{L²}(Ω) is isomorphic to the space of harmonic forms H^{p,q}(Ω).
- The operator $\Box_{p,q}$ is invertible on $\mathcal{H}^{p,q}(\Omega)^{\perp}$ and its inverse is called the $\overline{\partial}$ Neumann operator $N_{p,q}$.

• The $\overline{\partial}$ problem can be solved with L^2 -estimates: If $g \perp \ker(\overline{\partial}^*)$, then there is u such that $\overline{\partial}u = g$, and $||u||_{L^2} \leq C ||g||_{L^2}$.

Let $\Box_{p,q}$ ($\overline{\partial}$ -Laplacian) be the closed self-adjoint densely defined (unbounded) operator :

$$\Box_{p,q} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial} : L^2_{p,q}(\Omega) \to L^2_{p,q}(\Omega)$$

Suppose that the range $\Box_{p,q}$ closed. $L^2_{p,q}(\Omega) = \operatorname{Range}(\Box_{p,q}) \oplus \ker(\Box_{p,q})$. (\iff range of $\overline{\partial}$ is a closed subspace in $L^2_{p,q}(\Omega)$ and $L^2_{p,q+1}(\Omega)$.) $\mathcal{H}^{p,q}(\Omega) = \ker(\Box_{p,q})$, [the space of Harmonic (p,q)-forms]

- (Hodge Theorem) The space H^{p,q}_{L²}(Ω) is isomorphic to the space of harmonic forms H^{p,q}(Ω).
- The operator $\Box_{p,q}$ is invertible on $\mathcal{H}^{p,q}(\Omega)^{\perp}$ and its inverse is called the $\overline{\partial}$ Neumann operator $N_{p,q}$.
- The $\overline{\partial}$ problem can be solved with L^2 -estimates: If $g \perp \ker(\overline{\partial}^*)$, then there is u such that $\overline{\partial}u = g$, and $||u||_{L^2} \leq C ||g||_{L^2}$.

Let $\Box_{p,q}$ ($\overline{\partial}$ -Laplacian) be the closed self-adjoint densely defined (unbounded) operator :

$$\Box_{p,q} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial} : L^2_{p,q}(\Omega) \to L^2_{p,q}(\Omega)$$

Suppose that the range $\Box_{p,q}$ closed. $L^2_{p,q}(\Omega) = \operatorname{Range}(\Box_{p,q}) \oplus \ker(\Box_{p,q})$. (\iff range of $\overline{\partial}$ is a closed subspace in $L^2_{p,q}(\Omega)$ and $L^2_{p,q+1}(\Omega)$.) $\mathcal{H}^{p,q}(\Omega) = \ker(\Box_{p,q})$, [the space of Harmonic (p,q)-forms]

- (Hodge Theorem) The space H^{p,q}_{L²}(Ω) is isomorphic to the space of harmonic forms H^{p,q}(Ω).
- The operator $\Box_{p,q}$ is invertible on $\mathcal{H}^{p,q}(\Omega)^{\perp}$ and its inverse is called the $\overline{\partial}$ Neumann operator $N_{p,q}$.
- The $\overline{\partial}$ problem can be solved with L^2 -estimates: If $g \perp \ker(\overline{\partial}^*)$, then there is u such that $\overline{\partial}u = g$, and $||u||_{L^2} \leq C ||g||_{L^2}$.

Let $\Box_{p,q}$ ($\overline{\partial}$ -Laplacian) be the closed self-adjoint densely defined (unbounded) operator :

$$\Box_{p,q} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial} : L^2_{p,q}(\Omega) \to L^2_{p,q}(\Omega)$$

Suppose that the range $\Box_{p,q}$ closed. $L^2_{p,q}(\Omega) = \operatorname{Range}(\Box_{p,q}) \oplus \ker(\Box_{p,q})$. (\iff range of $\overline{\partial}$ is a closed subspace in $L^2_{p,q}(\Omega)$ and $L^2_{p,q+1}(\Omega)$.) $\mathcal{H}^{p,q}(\Omega) = \ker(\Box_{p,q})$, [the space of Harmonic (p,q)-forms]

- (Hodge Theorem) The space H^{p,q}_{L²}(Ω) is isomorphic to the space of harmonic forms H^{p,q}(Ω).
- The operator $\Box_{p,q}$ is invertible on $\mathcal{H}^{p,q}(\Omega)^{\perp}$ and its inverse is called the $\overline{\partial}$ Neumann operator $N_{p,q}$.
- The $\overline{\partial}$ problem can be solved with L^2 -estimates: If $g \perp \ker(\overline{\partial}^*)$, then there is u such that $\overline{\partial}u = g$, and $||u||_{L^2} \leq C ||g||_{L^2}$.

Let $\Box_{p,q}$ ($\overline{\partial}$ -Laplacian) be the closed self-adjoint densely defined (unbounded) operator :

$$\Box_{p,q} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial} : L^2_{p,q}(\Omega) \to L^2_{p,q}(\Omega)$$

Suppose that the range $\Box_{p,q}$ closed. $L^2_{p,q}(\Omega) = \operatorname{Range}(\Box_{p,q}) \oplus \ker(\Box_{p,q})$. (\iff range of $\overline{\partial}$ is a closed subspace in $L^2_{p,q}(\Omega)$ and $L^2_{p,q+1}(\Omega)$.) $\mathcal{H}^{p,q}(\Omega) = \ker(\Box_{p,q})$, [the space of Harmonic (p,q)-forms]

- (Hodge Theorem) The space H^{p,q}_{L²}(Ω) is isomorphic to the space of harmonic forms H^{p,q}(Ω).
- The operator $\Box_{p,q}$ is invertible on $\mathcal{H}^{p,q}(\Omega)^{\perp}$ and its inverse is called the $\overline{\partial}$ Neumann operator $N_{p,q}$.
- The $\overline{\partial}$ problem can be solved with L^2 -estimates: If $g \perp \ker(\overline{\partial}^*)$, then there is u such that $\overline{\partial}u = g$, and $||u||_{L^2} \leq C ||g||_{L^2}$.

∂ and ∂_c are dual to each other. ∂_s and ∂_č are dual to each other.
∂ (or ∂_s) has closed range ⇔ ∂_c (or ∂_č) has closed range.

Weak and Strong Extensions (Friedrichs-Hörmander (1965)) If Ω has Lipschitz boundary, then $\overline{\partial} = \overline{\partial}_s$ and $\overline{\partial}_c = \overline{\partial}_{\tilde{c}}$.

L² Serre duality (Chakrabarti-S (2012) Laurent-S (2013)

• Let $\star : L^2_{p,q}(\Omega) \to L^2_{n-p,n-q}(\Omega)$ be the Hodge star operator. We have

$$\star \Box_{p,q} = \Box_{n-p,n-q}^c \star,$$

where $\Box^c = \overline{\partial}_c \overline{\partial}_c^* + \overline{\partial}_c^* \overline{\partial}_c$.

• If $\overline{\partial}$ has closed range in $L^2_{p,q}(\Omega)$ and $L^2_{p,q+1}(\Omega)$

 $\implies H^{p,q}_{L^2}(\Omega) \cong H^{n-p,n-q}_{c,L^2}(\Omega) \text{ (since } \mathcal{H}^{p,q}(\Omega) \cong \mathcal{H}^{n-p,n-q}_{c,L^2}(\Omega)).$

- $\overline{\partial}$ and $\overline{\partial}_c$ are dual to each other. $\overline{\partial}_s$ and $\overline{\partial}_{\tilde{c}}$ are dual to each other.
- $\overline{\partial}$ (or $\overline{\partial}_s$) has closed range $\iff \overline{\partial}_c$ (or $\overline{\partial}_{\tilde{c}}$) has closed range.

Weak and Strong Extensions (Friedrichs-Hörmander (1965))

If Ω has Lipschitz boundary, then $\overline{\partial} = \overline{\partial}_s$ and $\overline{\partial}_c = \overline{\partial}_{\tilde{c}}$.

L² Serre duality (Chakrabarti-S (2012) Laurent-S (2013)

• Let $\star : L^2_{p,q}(\Omega) \to L^2_{n-p,n-q}(\Omega)$ be the Hodge star operator. We have

$$\star \Box_{p,q} = \Box_{n-p,n-q}^c \star,$$

where $\Box^c = \overline{\partial}_c \overline{\partial}_c^* + \overline{\partial}_c^* \overline{\partial}_c$.

• If $\overline{\partial}$ has closed range in $L^2_{p,q}(\Omega)$ and $L^2_{p,q+1}(\Omega)$

 $\implies H^{p,q}_{L^2}(\Omega) \cong H^{n-p,n-q}_{c,L^2}(\Omega) \text{ (since } \mathcal{H}^{p,q}(\Omega) \cong \mathcal{H}^{n-p,n-q}_{c,L^2}(\Omega)).$

- $\overline{\partial}$ and $\overline{\partial}_c$ are dual to each other. $\overline{\partial}_s$ and $\overline{\partial}_{\tilde{c}}$ are dual to each other.
- $\overline{\partial}$ (or $\overline{\partial}_s$) has closed range $\iff \overline{\partial}_c$ (or $\overline{\partial}_{\tilde{c}}$) has closed range.

Weak and Strong Extensions (Friedrichs-Hörmander (1965))

If Ω has Lipschitz boundary, then $\overline{\partial} = \overline{\partial}_s$ and $\overline{\partial}_c = \overline{\partial}_{\tilde{c}}$.

L² Serre duality (Chakrabarti-S (2012) Laurent-S (2013)

• Let $\star : L^2_{p,q}(\Omega) \to L^2_{n-p,n-q}(\Omega)$ be the Hodge star operator. We have

$$\star \Box_{p,q} = \Box_{n-p,n-q}^c \star,$$

where $\Box^c = \overline{\partial}_c \overline{\partial}_c^* + \overline{\partial}_c^* \overline{\partial}_c$.

• If $\overline{\partial}$ has closed range in $L^2_{p,q}(\Omega)$ and $L^2_{p,q+1}(\Omega)$

 $\implies H^{p,q}_{L^2}(\Omega) \cong H^{n-p,n-q}_{c,L^2}(\Omega) \text{ (since } \mathcal{H}^{p,q}(\Omega) \cong \mathcal{H}^{n-p,n-q}_{c,L^2}(\Omega)).$

- $\overline{\partial}$ and $\overline{\partial}_c$ are dual to each other. $\overline{\partial}_s$ and $\overline{\partial}_{\tilde{c}}$ are dual to each other.
- $\overline{\partial}$ (or $\overline{\partial}_s$) has closed range $\iff \overline{\partial}_c$ (or $\overline{\partial}_{\tilde{c}}$) has closed range.

Weak and Strong Extensions (Friedrichs-Hörmander (1965))

If Ω has Lipschitz boundary, then $\overline{\partial} = \overline{\partial}_s$ and $\overline{\partial}_c = \overline{\partial}_{\tilde{c}}$.

 L^2 Serre duality (Chakrabarti-S (2012) Laurent-S (2013)

• Let $\star : L^2_{p,q}(\Omega) \to L^2_{n-p,n-q}(\Omega)$ be the Hodge star operator. We have

 $\star \Box_{p,q} = \Box_{n-p,n-q}^c \star,$

where $\Box^c = \overline{\partial}_c \overline{\partial}_c^* + \overline{\partial}_c^* \overline{\partial}_c$.

• If $\overline{\partial}$ has closed range in $L^2_{p,q}(\Omega)$ and $L^2_{p,q+1}(\Omega)$

 $\implies H^{p,q}_{L^2}(\Omega) \cong H^{n-p,n-q}_{c,L^2}(\Omega) \text{ (since } \mathcal{H}^{p,q}(\Omega) \cong \mathcal{H}^{n-p,n-q}_{c,L^2}(\Omega))$

- $\overline{\partial}$ and $\overline{\partial}_c$ are dual to each other. $\overline{\partial}_s$ and $\overline{\partial}_{\tilde{c}}$ are dual to each other.
- $\overline{\partial}$ (or $\overline{\partial}_s$) has closed range $\iff \overline{\partial}_c$ (or $\overline{\partial}_{\tilde{c}}$) has closed range.

Weak and Strong Extensions (Friedrichs-Hörmander (1965))

If Ω has Lipschitz boundary, then $\overline{\partial} = \overline{\partial}_s$ and $\overline{\partial}_c = \overline{\partial}_{\tilde{c}}$.

L^2 Serre duality (Chakrabarti-S (2012) Laurent-S (2013)

• Let $\star: L^2_{p,q}(\Omega) \to L^2_{n-p,n-q}(\Omega)$ be the Hodge star operator. We have

$$\star \Box_{p,q} = \Box_{n-p,n-q}^c \star,$$

where $\Box^c = \overline{\partial}_c \overline{\partial}_c^* + \overline{\partial}_c^* \overline{\partial}_c$.

• If $\overline{\partial}$ has closed range in $L^2_{p,q}(\Omega)$ and $L^2_{p,q+1}(\Omega)$

$$\implies H^{p,q}_{L^2}(\Omega) \cong H^{n-p,n-q}_{c,L^2}(\Omega) \text{ (since } \mathcal{H}^{p,q}(\Omega) \cong \mathcal{H}^{n-p,n-q}_{c,L^2}(\Omega)).$$

- $\overline{\partial}$ and $\overline{\partial}_c$ are dual to each other. $\overline{\partial}_s$ and $\overline{\partial}_{\tilde{c}}$ are dual to each other.
- $\overline{\partial}$ (or $\overline{\partial}_s$) has closed range $\iff \overline{\partial}_c$ (or $\overline{\partial}_{\tilde{c}}$) has closed range.

Weak and Strong Extensions (Friedrichs-Hörmander (1965))

If Ω has Lipschitz boundary, then $\overline{\partial} = \overline{\partial}_s$ and $\overline{\partial}_c = \overline{\partial}_{\tilde{c}}$.

L^2 Serre duality (Chakrabarti-S (2012) Laurent-S (2013)

• Let $\star: L^2_{p,q}(\Omega) \to L^2_{n-p,n-q}(\Omega)$ be the Hodge star operator. We have

$$\star \Box_{p,q} = \Box_{n-p,n-q}^c \star,$$

where $\Box^c = \overline{\partial}_c \overline{\partial}_c^* + \overline{\partial}_c^* \overline{\partial}_c$.

• If $\overline{\partial}$ has closed range in $L^2_{p,q}(\Omega)$ and $L^2_{p,q+1}(\Omega)$

$$\implies H^{p,q}_{L^2}(\Omega) \cong H^{n-p,n-q}_{c,L^2}(\Omega) \text{ (since } \mathcal{H}^{p,q}(\Omega) \cong \mathcal{H}^{n-p,n-q}_{c,L^2}(\Omega)).$$

L^2 theory for $\overline{\partial}$ on pseudoconvex domains in \mathbb{C}^n

Hörmander 1965

 $\Omega \subset \subset \mathbb{C}^n$ is bounded and pseudoconvex $\implies H_{L^2}^{p,q}(\Omega) = 0, \qquad q > 0.$

The converse is also true if Ω If $\Omega \subset \mathbb{C}^n$ has Lipschitz boundary. $H_{L^2}^{p,q}(\Omega) = 0, q > 0 \implies \Omega$ is pseudoconvex. (Fu 2005 Hearing Pseudoconvexity).

Sobolev estimates and boundary regularity for $\overline{\partial}$ (Kohn 1963, 1974)

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n with smooth boundary. Then

$$H^{p,q}_{W^s}(\Omega)=0, \qquad s>0, \ q>0 \ H^{p,q}(\overline{\Omega})=0.$$

L^2 theory for $\overline{\partial}$ on pseudoconvex domains in \mathbb{C}^n

Hörmander 1965

 $\Omega \subset \subset \mathbb{C}^n$ is bounded and pseudoconvex $\implies H_{L^2}^{p,q}(\Omega) = 0, \qquad q > 0.$

The converse is also true if Ω If $\Omega \subset \mathbb{C}^n$ has Lipschitz boundary. $H^{p,q}_{L^2}(\Omega) = 0, q > 0 \implies \Omega$ is pseudoconvex. (Fu 2005 Hearing Pseudoconvexity).

Sobolev estimates and boundary regularity for $\overline{\partial}$ (Kohn 1963, 1974)

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n with smooth boundary. Then

$$egin{array}{ll} H^{p,q}_{W^s}(\Omega)=0, & s>0, \ q>0\ H^{p,q}(\overline{\Omega})=0. \end{array}$$

Laurent-S (2013)

Let Ω be a bounded Lipschitz domain in \mathbb{C}^2 such that $\mathbb{C}^2 \setminus \overline{\Omega}$ is connected. Suppose that Ω is not pseudoconvex. Then $H_{L^2}^{0,1}(\Omega)$ is non-Hausdorff.

If $\bar{\partial}$ has closed range in $L^{0,1}(\Omega)$, By L^2 Serre duality, $H^{0,1}_{L^2}(\Omega) \cong H^{2,1}_{L^2,\bar{\partial}_c}(\Omega) \cong H^{0,1}_{L^2,\bar{\partial}_c}(\Omega) = 0 \iff \Omega$ is pseudoconvex.

Corollary

Either $H_{L^2}^{0,1}(\Omega) = 0$ (and Ω is pseudoconvex) or $H_{L^2}^{0,1}(\Omega)$ is non-Hausdorff.

- Similar results also hold for (0, n 1)-forms in \mathbb{C}^n when $n \ge 3$.
- Laufer (1975) Let Ω be a domain in \mathbb{C}^n (or a Stein manifold). Then either $H^{0,1}(\Omega) = 0$ or $H^{0,1}(\Omega)$ is infinite dimensional.
- Trapani (1986) obtained similar results in $H^{0,1}(\Omega)$.

Let *T* be the Hartogs triangle in \mathbb{C}^2 defined by

$$T = \{(z, w) \in \mathbb{C}^2 \mid |z| < |w| < 1\}.$$

- $T \cong D \times D_*$ and T is pseudoconvex
- *T* is not Lipschitz at 0.
- \overline{T} does not have a Stein neighborhood basis. (The Diederich-Fornaess worm domains are smooth pseudoconvex domains without Stein neighborhood basis.)
- Since T is pseudoconvex, we have $H_{L^2}^{0,1}(T) = 0$.
- $\overline{\partial}$ has closed range in $L^2_{0,1}(T)$ and the range is equal to Ker($\overline{\partial}$).
- Does $\overline{\partial}_s$ have closed range?
- Is $\overline{\partial} = \overline{\partial}_s$ on T?

Let *T* be the Hartogs triangle in \mathbb{C}^2 defined by

$$T = \{ (z, w) \in \mathbb{C}^2 \mid |z| < |w| < 1 \}.$$

- $T \cong D \times D_*$ and T is pseudoconvex
- *T* is not Lipschitz at 0.
- \overline{T} does not have a Stein neighborhood basis. (The Diederich-Fornaess worm domains are smooth pseudoconvex domains without Stein neighborhood basis.)
- Since T is pseudoconvex, we have $H_{L^2}^{0,1}(T) = 0$.
- $\overline{\partial}$ has closed range in $L^2_{0,1}(T)$ and the range is equal to Ker($\overline{\partial}$).
- Does $\overline{\partial}_s$ have closed range?
- Is $\overline{\partial} = \overline{\partial}_s$ on T?

Let *T* be the Hartogs triangle in \mathbb{C}^2 defined by

$$T = \{ (z, w) \in \mathbb{C}^2 \mid |z| < |w| < 1 \}.$$

- $T \cong D \times D_*$ and T is pseudoconvex
- *T* is not Lipschitz at 0.
- \overline{T} does not have a Stein neighborhood basis. (The Diederich-Fornaess worm domains are smooth pseudoconvex domains without Stein neighborhood basis.)
- Since T is pseudoconvex, we have $H_{L^2}^{0,1}(T) = 0$.
- $\overline{\partial}$ has closed range in $L^2_{0,1}(T)$ and the range is equal to Ker($\overline{\partial}$).
- Does $\overline{\partial}_s$ have closed range?
- Is $\overline{\partial} = \overline{\partial}_s$ on *T*?

12/31

Global Irregularity (Sibony 1980)

There exists $g \in C_{0,1}^{\infty}(\overline{T})$ with $\overline{\partial}g = 0$, there does not exist $u \in C^{\infty}(\overline{T})$ such that $\overline{\partial}u = g$ and $H^{0,1}(\overline{T})$ is infinite dimensional.

In fact, $H^{0,1}(\overline{T})$ is non-Hausdorff (Laurent-S 2015).

Global regularity (Chaumat-Chollet 1991)

For each positive integer k and $0 < \alpha < 1$, there exists $u \in C^{k,\alpha}(T)$ with $\overline{\partial}u = f$ for any $\overline{\partial}$ -closed $f \in C^{k,\alpha}(T)$.

$$H^{0,1}_{\mathcal{C}^{k,\alpha}}(T)=0.$$

Notice that

$$\cap_k C^{k,\alpha}(T) = C^{\infty}(\overline{T}).$$

Global regularity and irregularity

Global Irregularity (Sibony 1980)

There exists $g \in C_{0,1}^{\infty}(\overline{T})$ with $\overline{\partial}g = 0$, there does not exist $u \in C^{\infty}(\overline{T})$ such that $\overline{\partial}u = g$ and $H^{0,1}(\overline{T})$ is infinite dimensional.

In fact, $H^{0,1}(\overline{T})$ is non-Hausdorff (Laurent-S 2015).

Global regularity (Chaumat-Chollet 1991)

For each positive integer k and $0 < \alpha < 1$, there exists $u \in C^{k,\alpha}(T)$ with $\overline{\partial}u = f$ for any $\overline{\partial}$ -closed $f \in C^{k,\alpha}(T)$.

$$H^{0,1}_{C^{k,\alpha}}(T)=0.$$

Notice that

$$\cap_k C^{k,\alpha}(T) = C^{\infty}(\overline{T}).$$

Global Irregularity (Sibony 1980)

There exists $g \in C_{0,1}^{\infty}(\overline{T})$ with $\overline{\partial}g = 0$, there does not exist $u \in C^{\infty}(\overline{T})$ such that $\overline{\partial}u = g$ and $H^{0,1}(\overline{T})$ is infinite dimensional.

In fact, $H^{0,1}(\overline{T})$ is non-Hausdorff (Laurent-S 2015).

Global regularity (Chaumat-Chollet 1991)

For each positive integer k and $0 < \alpha < 1$, there exists $u \in C^{k,\alpha}(T)$ with $\overline{\partial}u = f$ for any $\overline{\partial}$ -closed $f \in C^{k,\alpha}(T)$.

$$H^{0,1}_{C^{k,\alpha}}(T) = 0.$$

Notice that

$$\cap_k C^{k,\alpha}(T) = C^{\infty}(\overline{T}).$$

Global Irregularity (Sibony 1980)

There exists $g \in C_{0,1}^{\infty}(\overline{T})$ with $\overline{\partial}g = 0$, there does not exist $u \in C^{\infty}(\overline{T})$ such that $\overline{\partial}u = g$ and $H^{0,1}(\overline{T})$ is infinite dimensional.

In fact, $H^{0,1}(\overline{T})$ is non-Hausdorff (Laurent-S 2015).

Global regularity (Chaumat-Chollet 1991)

For each positive integer k and $0 < \alpha < 1$, there exists $u \in C^{k,\alpha}(T)$ with $\overline{\partial}u = f$ for any $\overline{\partial}$ -closed $f \in C^{k,\alpha}(T)$.

$$H^{0,1}_{C^{k,\alpha}}(T) = 0.$$

Notice that

$$\cap_k C^{k,\alpha}(T) = C^{\infty}(\overline{T}).$$

1) The $\overline{\partial}$ -problem and Dolbeault cohomology groups

2) L^2 theory for $\overline{\partial}$ on domains in \mathbb{C}^n

3 Function theory and $\overline{\partial}$ on the Hartogs triangle

4 The Cauchy-Riemann Equations in Complex Projective Spaces

5 The $\overline{\partial}$ operator on Hartogs triangles in \mathbb{CP}^2

Let $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary. Then Ω is an extension domain. For each $k \in \mathbb{N}$ and $1 \le p \le \infty$, there exists a bounded linear operator

$$\eta_k: W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^n)$$

such that $\eta_k f|_{\Omega} = f$ for all $f \in W^{k,p}(\Omega)$.

• Proved by Whitney's extension and regulariiztaion.

Theorem (Burchard-Flynn-Lu-S 2022 Math. Zeit.)

The Hartogs triangle *T* is a Sobolev extension domain.

The Hartogs triangle T is not Lipschitz. But T is a uniform domain (or (ϵ, δ)) domain or in the sense Gehring (1979) (or Jones (1981)).

15/31

Let $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary. Then Ω is an extension domain. For each $k \in \mathbb{N}$ and $1 \le p \le \infty$, there exists a bounded linear operator

$$\eta_k: W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^n)$$

such that $\eta_k f|_{\Omega} = f$ for all $f \in W^{k,p}(\Omega)$.

• Proved by Whitney's extension and regulariiztaion.

Theorem (Burchard-Flynn-Lu-S 2022 Math. Zeit.)

The Hartogs triangle *T* is a Sobolev extension domain.

The Hartogs triangle T is not Lipschitz. But T is a uniform domain (or (ϵ, δ)) domain or in the sense Gehring (1979) (or Jones (1981)).

15/31

Let $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary. Then Ω is an extension domain. For each $k \in \mathbb{N}$ and $1 \le p \le \infty$, there exists a bounded linear operator

$$\eta_k: W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^n)$$

such that $\eta_k f|_{\Omega} = f$ for all $f \in W^{k,p}(\Omega)$.

• Proved by Whitney's extension and regulariiztaion.

Theorem (Burchard-Flynn-Lu-S 2022 Math. Zeit.)

The Hartogs triangle *T* is a Sobolev extension domain.

The Hartogs triangle T is not Lipschitz. But T is a uniform domain (or (ϵ, δ)) domain or in the sense Gehring (1979) (or Jones (1981)).

15/31

Let $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary. Then Ω is an extension domain. For each $k \in \mathbb{N}$ and $1 \le p \le \infty$, there exists a bounded linear operator

$$\eta_k: W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^n)$$

such that $\eta_k f|_{\Omega} = f$ for all $f \in W^{k,p}(\Omega)$.

• Proved by Whitney's extension and regulariiztaion.

Theorem (Burchard-Flynn-Lu-S 2022 Math. Zeit.)

The Hartogs triangle T is a Sobolev extension domain.

The Hartogs triangle T is not Lipschitz. But T is a uniform domain (or (ϵ, δ)) domain or in the sense Gehring (1979) (or Jones (1981)).

Let $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary. Then Ω is an extension domain. For each $k \in \mathbb{N}$ and $1 \le p \le \infty$, there exists a bounded linear operator

 $\eta_k: W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^n)$

such that $\eta_k f|_{\Omega} = f$ for all $f \in W^{k,p}(\Omega)$.

• Proved by Whitney's extension and regulariiztaion.

Theorem (Burchard-Flynn-Lu-S 2022 Math. Zeit.)

The Hartogs triangle T is a Sobolev extension domain.

The Hartogs triangle *T* is not Lipschitz. But *T* is a uniform domain (or (ϵ, δ)) domain or in the sense Gehring (1979) (or Jones (1981)).

Uniform domains

(ϵ, δ) and Uniform Domains: Let Ω be a domain in \mathbb{R}^n . The domain Ω is called an (ϵ, δ) *domain* if for every $p_1, p_2 \in \Omega$ and $|p_1 - p_2| < \delta$, there exists a rectifiable curve $\gamma \in \Omega$ joining *x* and *y* such that

$$\ell(\gamma) \le \frac{1}{\epsilon} |p_1 - p_2|$$

and

$$\operatorname{dist}(p,b\Omega) \ge rac{\epsilon |p-p_1| |p-p_2|}{|p_1-p_2|} \quad ext{for all } p \in \gamma.$$

where $\ell(\gamma)$ denotes the Euclidean length of γ and dist $(p, b\Omega)$ denotes the distance from p to $b\Omega$.

When $\delta = \infty$, Ω is called a *uniform domain*.

Lemma

The Hartogs triangle is is a uniform domain (with $\epsilon = 0.01$).

From a theorem by Jones (1981), it is an extension domain,

Mei-Chi Shaw (Notre Dame)

Sobolev spaces on T

Let $W^1(T)$ denote the Sobolev space of L^2 -functions on T with weak first-order derivatives in L^2 . Then the following statements hold:

- (Smooth approximation). $C^{\infty}(\overline{T})$ is dense in $W^1(T)$.
- (Sobolev embedding). $W^1(T) \subset L^4(T)$, and the inclusion map is bounded.
- **③** (*Rellich lemma*). The inclusion $W^1(T) ⊂ L^2(T)$ is compact.

Poincaré's inequality

There exists a constant C > 0 such that

$$\|f\|^2 \le C \|df\|^2$$

for all $f \in W^1(T)$ with (f, 1) = 0, where || || denotes the L^2 -norm on T.

Applications and Open Questions

Applications of the Sobolev extension theorem

- The Hartogs triangle T is a chord-arc domain. The trace theorem holds.
- $d: L^2(T) \to L^2_1(T)$ has closed range and $d = d_s$ (Poincaré's Inequality holds).
- The Neumann boundary value problem is solvable. Given any $f \in L^2(T)$ such that $(f, 1) = \int_T f = 0$, there exists $u = G_{\nu}f \in W^1(T)$ such that

$$(du, d\phi) = (f, \phi)$$
 for all $\phi \in W^1(T)$.

• The solution $G_{\nu}: L^2(T) \to L^2(T)$ is compact (by the Rellich lemma). Open Questions:

• Does $d_q: L^2_q(T) \to L^2_{q+1}(T)$ have closed range? q = 1, 2.

Does the Hodge theorem holds for L²_q(T)?
⇒ Does △_q = d_{q-1}d^{*}_q + d^{*}_{q+1}d_q have closed range?
q = 0 or q = 3, Yes and d = d_s.

Weak and Strong Extensions for $\overline{\partial}$

Weak equals strong for $\overline{\partial}$ (Burchard-Flynn-Lu-S.)

On *T*, we have $\overline{\partial} = \overline{\partial}_s$.

Proof:

- Let $\mathcal{H}(T) = \operatorname{Ker}(\overline{\partial}) \cap L^2(T)$ be the Bergman space. Since $T \cong D \times D_*$, we can analyze \mathcal{H} by Laurent expansions.
- We first show

$$\operatorname{Ker}(\overline{\partial}) = \operatorname{Ker}(\overline{\partial}_s) = \mathcal{H}.$$

- $\overline{\partial}_c = \overline{\partial}_{\tilde{c}}$ on functions using the Sobolev Embedding Theorem for *T*.
- From L^2 Serre duality, we have $\overline{\partial}_s : L^2_{0,1}(T) \to L^2_{0,2}(T)$ has closed range and Range $(\overline{\partial}_s) = L^2_{0,2}(T)$.
- $q = 1, \overline{\partial}_s : L^2(T) \to L^2_{0,1}(T)$ has closed range and

$$\operatorname{Range}(\overline{\partial}_s) = \operatorname{Range}(\overline{\partial}).$$

Hörmander 2002, Shaw 2005

Let $\Omega = \Omega_1 \setminus \overline{\Omega}_2 \Subset \mathbb{C}^2$ where $\Omega_1 \Subset \Omega_2$ are bounded pseudoconves domains with smooth boundary. Then

$$H^{0,1}_{L^2}(\Omega) \cong \mathcal{H}(\Omega_2).$$

In particular, $H^{0,1}_{W^1}(\Omega)$ is Hausdorff and infinite dimensional.

Dolbeault cohomology on the complement of T

Suppose Ω_1 has C^2 boundary and $\Omega_2 = T$. Then

 $H^{0,1}_{W^1}(\Omega) \cong \mathcal{H}(T).$

- (Dollar Bill Question) Is $H_{L^2}^{0,1}(\Omega)$ is Hausdorff?
- $\iff H^{0,1}_{W^1}(\Omega_2) = 0 \ (H^{0,1}(\Omega) \text{ is non-Hausdorff }) \ (\text{Laurent-S 2013.})$
- When $\Omega_2 = D^2$, $H^{0,1}_{L^2}(\Omega)$ is Hausdorff (Chakrabarti-Laurent-S2017).

1 The $\overline{\partial}$ -problem and Dolbeault cohomology groups

- 2) L^2 theory for $\overline{\partial}$ on domains in \mathbb{C}^n
- 3 Function theory and $\overline{\partial}$ on the Hartogs triangle

The Cauchy-Riemann Equations in Complex Projective Spaces

5 The $\overline{\partial}$ operator on Hartogs triangles in \mathbb{CP}^2

Let *X* be a complex manifold. All the results for \mathbb{C}^n can be extended to Stein manifolds (*X* is Stein \iff *X* is a closed subspace of \mathbb{C}^N).

 $\implies H^{p,q}(X) = 0, \ q \neq 0.$

- Let *X* be a compact complex manifold. Then $H^{p,q}(X)$ is finite-dimensional for all $0 \le p, q \le n$.
- Suppose that X is a complex manifold with strongly pseudoconvex boundary. Then $H^{p,q}(X)$ is finite-dimensional for all $q \neq 0$.
- There exists a complex manifold *X* (not Stein) with weakly pseudoconvex boundary such that *H*^{0,1}(*X*) is not Hausdorff. (Malgrange (1975)).
- There exists a complex Stein manifold X with weakly pseudoconvex boundary such that $H_{L^2}^{2,1}(X)$ is not Hausdorff (but $H^{2,1}(X) = 0$). (Chakrabarti-S (2015)).

The $\overline{\partial}$ -problem on pseudoonvex domains in \mathbb{CP}^n

Takeuchi (1964)

Let $\Omega \Subset \mathbb{CP}^n$ be a pseudoconvex domain. Then Ω is Stein (Hence $H^{p.q}(\Omega)=0, \; q \neq 0.$)

The Bochner-Kodaira-Morrey-Kohn formula:

Let Ω be a domain with smooth boundary. For $u \in C^1_{p,q}(\overline{\Omega}) \cap \text{Dom}(\overline{\partial}) \cap \text{dom}(\overline{\partial}^*)$,

$$\|\overline{\partial}u\|^2 + \|\overline{\partial}^*u\|^2 = \|\overline{\nabla}u\|^2 + (\Theta_{p,q}u, u) + \int_{b\Omega} \langle (\partial\overline{\partial}\rho)u, u \rangle dS \qquad (2)$$

where ρ is a defining function, dS is the induced surface element on $b\Omega$, $|\overline{\nabla}u|^2 = \sum_{j=1}^n |\nabla_{\overline{L}_j}u|^2$ and $\Theta_{p,q}$ is the curvature term associated with the Fubini-Study metric.

The $\overline{\partial}$ -problem on pseudoonvex domains in \mathbb{CP}^n

Takeuchi (1964)

Let $\Omega \Subset \mathbb{CP}^n$ be a pseudoconvex domain. Then Ω is Stein (Hence $H^{p.q}(\Omega)=0, \; q \neq 0.$)

The Bochner-Kodaira-Morrey-Kohn formula:

Let Ω be a domain with smooth boundary. For $u \in C^1_{p,q}(\overline{\Omega}) \cap \text{Dom}(\overline{\partial}) \cap \text{dom}(\overline{\partial}^*)$,

$$\|\overline{\partial}u\|^2 + \|\overline{\partial}^*u\|^2 = \|\overline{\nabla}u\|^2 + (\Theta_{p,q}u, u) + \int_{b\Omega} \langle (\partial\overline{\partial}\rho)u, u \rangle dS \qquad (2)$$

where ρ is a defining function, dS is the induced surface element on $b\Omega$, $|\overline{\nabla}u|^2 = \sum_{j=1}^n |\nabla_{\overline{L}_j}u|^2$ and $\Theta_{p,q}$ is the curvature term associated with the Fubini-Study metric.

L^2 theory for $\overline{\partial}$ in \mathbb{CP}^n

The curvature term

•
$$\langle \Theta u, u \rangle = q(2n+1)|u|^2$$
 if $p = 0$;

•
$$\langle \Theta u, u \rangle = 0$$
, if $p = n$;

• $\langle \Theta u, u \rangle \ge 0$, if $p \ge 1$.

Theorem

Let $\Omega \in \mathbb{CP}^n$ be a pseudoconvex domain. Then $H^{0,q}_{L^2}(\Omega) = 0$, q > 0.

Suppose Ω has smooth boundary. B-K-M-K formula gives

$$\begin{split} \|\overline{\partial}u\|^2 + \|\overline{\partial}^*u\|^2 &= \|\overline{\nabla}u\|^2 + (\Theta_{p,q}u, u) + \int_{b\Omega} \langle (\partial\overline{\partial}\rho)u, u \rangle dS \\ &\geq q(2n+1)\|u\|^2. \end{split}$$

This gives an alternative proof to the Hörmander's L^2 theorem.

Bounded plurisubharmonic exhaustion functions

Let $\Omega \in \mathbb{CP}^n$ with Lipschitz boundary. There exist a distance function δ and an $0 < \eta \le 1$ such that

$$i\partial\overline{\partial}(-\delta^{\eta}) > 0.$$

There exists a bounded plurisubharmonic exhaustion function for Ω . (Ohsawa-Sibony) for C^2 boundary (1998) and (Harrington) for Lipschitz boundary (2017). η is called the Diederich-Fornaess exponent.

L² Existence and Boundary Regularity (Berndtsson-Charpentier 2000)

•
$$H_{L^2}^{p,q}(\Omega) = 0$$
 for all $q > 0$

• Let η be the Diederich-Fornaess exponent with $0 < \eta \leq 1$.

•
$$B: W^{\epsilon}(\Omega) \to W^{\epsilon}(\Omega), \epsilon < \frac{\eta}{2}.$$

 $N: W^{\epsilon}(\Omega) \to W^{\epsilon}(\Omega)$ (Cao-S-Wang 2004).

Bounded plurisubharmonic exhaustion functions

Let $\Omega \in \mathbb{CP}^n$ with Lipschitz boundary. There exist a distance function δ and an $0 < \eta \le 1$ such that

$$i\partial\overline{\partial}(-\delta^{\eta}) > 0.$$

There exists a bounded plurisubharmonic exhaustion function for Ω . (Ohsawa-Sibony) for C^2 boundary (1998) and (Harrington) for Lipschitz boundary (2017). η is called the Diederich-Fornaess exponent.

L² Existence and Boundary Regularity (Berndtsson-Charpentier 2000)

•
$$H_{L^2}^{p,q}(\Omega) = 0$$
 for all $q > 0$

• Let η be the Diederich-Fornaess exponent with $0 < \eta \leq 1$.

•
$$B: W^{\epsilon}(\Omega) \to W^{\epsilon}(\Omega), \epsilon < \frac{\eta}{2}.$$

 $N: W^{\epsilon}(\Omega) \to W^{\epsilon}(\Omega)$ (Cao-S-Wang 2004).

1) The $\overline{\partial}$ -problem and Dolbeault cohomology groups

- 2 L^2 theory for $\overline{\partial}$ on domains in \mathbb{C}^n
- 3 Function theory and $\overline{\partial}$ on the Hartogs triangle
- 4 The Cauchy-Riemann Equations in Complex Projective Spaces
- **(5)** The $\overline{\partial}$ operator on Hartogs triangles in \mathbb{CP}^2

In \mathbb{CP}^2 , we denote the homogeneous coordinates by $[z_0, z_1, z_2]$. On the domain where $z_0 \neq 0$, we set $z = \frac{z_1}{z_0}$ and $w = \frac{z_2}{z_0}$. Let H^+ and H^- be defined by

$$H^{+} = \{ [z_{0} : z_{1} : z_{2}] \in \mathbb{CP}^{2} \mid |z_{1}| < |z_{2}| \}$$
$$H^{-} = \{ [z_{0} : z_{1} : z_{2}] \in \mathbb{CP}^{2} \mid |z_{1}| > |z_{2}| \}$$
$$M = \{ [z_{0} : z_{1} : z_{2}] \in \mathbb{CP}^{2} \mid |z_{1}| = |z_{2}| \}.$$

$$H^+ \cup M \cup H^- = \mathbb{CP}^2.$$

These domains are called Hartogs' triangles in \mathbb{CP}^2 . It is not Lipschitz near 0.

The boundary

$$M = \{ [z_0 : z_1 : z_2] \in \mathbb{CP}^2 \mid |z_1| = |z_2|, \ z_0 \neq 0 \}$$
$$= \{ (z, w) \in \mathbb{C}^2 \mid |z| = |w| \}.$$

• For each $\theta \in \mathbb{R}$,

$$S_{\theta} = \{ (z, w) \in \mathbb{C}^2 \mid z = e^{i\theta} w \}.$$

- Each S_{θ} is a compact Riemann surface.
- $M = \cup_{\theta} S_{\theta}$.
- $\cap_{\theta} S_{\theta} = 0$. *M* is not foliated by complex curves at 0.

• Both H^+ and H^- are pseudoconvex ($\cong \mathbb{C} \times D$).

• *M* is a (non-Lipschitz) Levi-flat hypersurface in ℂℙ² in the sense that *M* splits ℂℙ² into two pseudoconvex domains.

Theorem (Laurent-S, 2018, Trans. AMS)

We have that $H^{2,1}_{\overline{\partial}_s,L^2}(H^+)$ is infinite dimensional.

- By analyzing the Bergman space $\mathcal{H}(H^-)$, we have $\mathcal{H}(H^-) \cap W^1(H^-)$ is infinite dimensional. Then $H^{2,1}_{\overline{\partial}_z L^2}(H^+)$ is infinite dimensional.
- Suppose that $\overline{\partial}_s$ has closed range, then $\overline{\partial}_{\tilde{c}}$ has closed range.
- L^2 Serre duality $\implies H^{2,1}_{\overline{\partial}_{\bar{s}},L^2}(H^+) \cong H^{2,1}_{\overline{\partial}_{\bar{c}},L^2}(H^+)$, which is infinite dimensional.

- Both H^+ and H^- are pseudoconvex ($\cong \mathbb{C} \times D$).
- *M* is a (non-Lipschitz) Levi-flat hypersurface in \mathbb{CP}^2 in the sense that *M* splits \mathbb{CP}^2 into two pseudoconvex domains.

Theorem (Laurent-S, 2018, Trans. AMS)

We have that $H^{2,1}_{\overline{\partial}_r L^2}(H^+)$ is infinite dimensional.

- By analyzing the Bergman space $\mathcal{H}(H^-)$, we have $\mathcal{H}(H^-) \cap W^1(H^-)$ is infinite dimensional. Then $H^{2,1}_{\overline{\partial}_z L^2}(H^+)$ is infinite dimensional.
- Suppose that $\overline{\partial}_s$ has closed range, then $\overline{\partial}_{\tilde{c}}$ has closed range.
- L^2 Serre duality $\implies H^{2,1}_{\overline{\partial}_s,L^2}(H^+) \cong H^{2,1}_{\overline{\partial}_{\overline{c}},L^2}(H^+)$, which is infinite dimensional.

• Both H^+ and H^- are pseudoconvex ($\cong \mathbb{C} \times D$).

• *M* is a (non-Lipschitz) Levi-flat hypersurface in \mathbb{CP}^2 in the sense that *M* splits \mathbb{CP}^2 into two pseudoconvex domains.

Theorem (Laurent-S, 2018, Trans. AMS)

We have that $H^{2,1}_{\overline{\partial}_{s},L^{2}}(H^{+})$ is infinite dimensional.

- By analyzing the Bergman space $\mathcal{H}(H^-)$, we have $\mathcal{H}(H^-) \cap W^1(H^-)$ is infinite dimensional. Then $H^{2,1}_{\overline{\partial}_z L^2}(H^+)$ is infinite dimensional.
- Suppose that $\overline{\partial}_s$ has closed range, then $\overline{\partial}_{\tilde{c}}$ has closed range.
- L^2 Serre duality $\implies H^{2,1}_{\overline{\partial}_s,L^2}(H^+) \cong H^{2,1}_{\overline{\partial}_{\overline{c}},L^2}(H^+)$, which is infinite dimensional.

- Both H^+ and H^- are pseudoconvex ($\cong \mathbb{C} \times D$).
- *M* is a (non-Lipschitz) Levi-flat hypersurface in ℂℙ² in the sense that *M* splits ℂℙ² into two pseudoconvex domains.

Theorem (Laurent-S, 2018, Trans. AMS)

We have that $H^{2,1}_{\overline{\partial}_{s},L^{2}}(H^{+})$ is infinite dimensional.

- By analyzing the Bergman space $\mathcal{H}(H^-)$, we have $\mathcal{H}(H^-) \cap W^1(H^-)$ is infinite dimensional. Then $H^{2,1}_{\overline{\partial}_z, L^2}(H^+)$ is infinite dimensional.
- Suppose that $\overline{\partial}_s$ has closed range, then $\overline{\partial}_{\tilde{c}}$ has closed range.
- L^2 Serre duality $\implies H^{2,1}_{\overline{\partial}_{s},L^2}(H^+) \cong H^{2,1}_{\overline{\partial}_{\tilde{c}},L^2}(H^+)$, which is infinite dimensional.

The Hartogs triangle and Levi-flat hypersurfaces

- $\overline{\partial} = \overline{\partial}_s$ on $H^{\pm} \implies H^{2,1}_{L^2}(H^+)$ is infinitely dimensional.
- Is $H^{2,1}_{L^2}(H^+)$ Hausdorff? (\iff Does $\overline{\partial}$ have closed range in $L^2_{2,1}(H^+)$?)
- Does there exist smooth (or Lipschitz) Levi-flat hypersurfaces in \mathbb{CP}^2 ?
- When n ≥ 3, there exist no Lipschitz Levi-flat hypersurfaces in CPⁿ (Lins-Neto 1999 C^ω, Siu 2000 C[∞], Cao-Shaw 2007 Lipschitz).

Boundary regularity

For a pseudoconvex domain $\Omega \in \mathbb{CP}^n$ with smooth boundary, do we have

• $H^{0,1}_{W^1}(\Omega) = 0$? (We do have $H^{0,1}_{L^2}(\Omega) = 0$.)

H^{0,1}_{W^{1/2}}(Ω) = 0? (⇒ closed range property for ∂_b). H^{0,1}(Ω)=0?

The Hartogs triangle and Levi-flat hypersurfaces

- $\overline{\partial} = \overline{\partial}_s$ on $H^{\pm} \implies H^{2,1}_{L^2}(H^+)$ is infinitely dimensional.
- Is $H^{2,1}_{L^2}(H^+)$ Hausdorff? (\iff Does $\overline{\partial}$ have closed range in $L^2_{2,1}(H^+)$?)
- Does there exist smooth (or Lipschitz) Levi-flat hypersurfaces in \mathbb{CP}^2 ?
- When n ≥ 3, there exist no Lipschitz Levi-flat hypersurfaces in CPⁿ (Lins-Neto 1999 C^ω, Siu 2000 C[∞], Cao-Shaw 2007 Lipschitz).

Boundary regularity

For a pseudoconvex domain $\Omega \Subset \mathbb{CP}^n$ with smooth boundary, do we have

- $H^{0,1}_{W^1}(\Omega) = 0$? (We do have $H^{0,1}_{L^2}(\Omega) = 0$.)
- H^{0,1}_{W¹/2}(Ω) = 0? (⇒ closed range property for ∂_b).
 H^{0,1}(Ω)=0?

The Hartogs triangle and Levi-flat hypersurfaces

- $\overline{\partial} = \overline{\partial}_s$ on $H^{\pm} \implies H^{2,1}_{L^2}(H^+)$ is infinitely dimensional.
- Is $H^{2,1}_{L^2}(H^+)$ Hausdorff? (\iff Does $\overline{\partial}$ have closed range in $L^2_{2,1}(H^+)$?)
- Does there exist smooth (or Lipschitz) Levi-flat hypersurfaces in \mathbb{CP}^2 ?
- When n ≥ 3, there exist no Lipschitz Levi-flat hypersurfaces in CPⁿ (Lins-Neto 1999 C^ω, Siu 2000 C[∞], Cao-Shaw 2007 Lipschitz).

Boundary regularity

For a pseudoconvex domain $\Omega \Subset \mathbb{CP}^n$ with smooth boundary, do we have

- $H^{0,1}_{W^1}(\Omega) = 0$? (We do have $H^{0,1}_{L^2}(\Omega) = 0$.)
- H^{0,1}_{W¹/2}(Ω) = 0? (⇒ closed range property for ∂_b).
 H^{0,1}(Ω)=0?

The Hartogs triangle and Levi-flat hypersurfaces

- $\overline{\partial} = \overline{\partial}_s$ on $H^{\pm} \implies H^{2,1}_{L^2}(H^+)$ is infinitely dimensional.
- Is $H^{2,1}_{L^2}(H^+)$ Hausdorff? (\iff Does $\overline{\partial}$ have closed range in $L^2_{2,1}(H^+)$?)
- Does there exist smooth (or Lipschitz) Levi-flat hypersurfaces in \mathbb{CP}^2 ?
- When n ≥ 3, there exist no Lipschitz Levi-flat hypersurfaces in CPⁿ (Lins-Neto 1999 C^ω, Siu 2000 C[∞], Cao-Shaw 2007 Lipschitz).

Boundary regularity

For a pseudoconvex domain $\Omega \Subset \mathbb{CP}^n$ with smooth boundary, do we have

- $H^{0,1}_{W^1}(\Omega) = 0$? (We do have $H^{0,1}_{L^2}(\Omega) = 0$.)
- H^{0,1}_{W¹/2}(Ω) = 0? (⇒ closed range property for ∂_b).
 H^{0,1}(Ω)=0?

The Hartogs triangle and Levi-flat hypersurfaces

- $\overline{\partial} = \overline{\partial}_s$ on $H^{\pm} \implies H^{2,1}_{L^2}(H^+)$ is infinitely dimensional.
- Is $H^{2,1}_{L^2}(H^+)$ Hausdorff? (\iff Does $\overline{\partial}$ have closed range in $L^2_{2,1}(H^+)$?)
- Does there exist smooth (or Lipschitz) Levi-flat hypersurfaces in \mathbb{CP}^2 ?
- When n ≥ 3, there exist no Lipschitz Levi-flat hypersurfaces in CPⁿ (Lins-Neto 1999 C^ω, Siu 2000 C[∞], Cao-Shaw 2007 Lipschitz).

Boundary regularity

For a pseudoconvex domain $\Omega \Subset \mathbb{CP}^n$ with smooth boundary, do we have

- $H^{0,1}_{W^1}(\Omega) = 0$? (We do have $H^{0,1}_{L^2}(\Omega) = 0$.)
- H^{0,1}_{W¹/2}(Ω) = 0? (⇒ closed range property for ∂_b).
 H^{0,1}(Ω)=0?

Thank You

글 > : < 글 >

• • • • • • • • •