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Categories

Category C = (Cobj , Cmorp) is a
structure consisting of

class of objects Cobj ,
class of morphisms Cmorp,
composition – binary operation
◦ defined on morphisms.
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Functor F : C → D is a
structure-preserving morphism
between categories

F0 : Cobj → Dobj

F1 : Cmorp → Dmorp,
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Categories

mathematical structures consisting of objects and morphisms between them,
objects can be various mathematical structures, data structures, types,
categories have become useful for modeling computations, processes, programs,
program systems,
are basic structures for coalgebraic behavioral models.

Categories in teaching
quite simple mathematical structures,
graphical representations useful for illustration of examples,
understandable for our students.
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https://www.nasa.gov/consortium/CategoryTheory
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Formal semantics

provides unambiguous meaning of programs written in programming language,
helps designers to prepare good and useful programming languages,
serves for designers to design correct compilers,
encourages users/programmers how to use language constructions properly.

Semantic methods
denotational semantics,
operational semantics,
natural semantics,
axiomatic semantics,
action semantics,
game semantics,
. . .
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Categorical semantics

denotational semantics uses category of types where objects are types and
morphisms are functions,
algebraic semantics uses institutions as complex structures based on categories of
signatures,
game semantics uses category of arenas.
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Basic ideas of our approach

Why categorical semantics
provides illustrative view of dynamics of states,
provides simply understandable mathematical model of programs,
appropriate for designers of compilers,
serves for creating skills to work with formal methods.

Construction of category of states
we consider simple imperative language,
our language has only two implicit types,
for now, we do not consider exception, jumps and recursion,
we construct category of states,
environment of procedures is constructed as category of categories,
so simplified model is understandable without losing exactness.
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Categorical denotational semantics of imperative languages
Categorical representation

formulation of meaning indicates (determines) a construction of a
categorical model for a given program,
categorical model consists of:

▶ objects – states during the program execution,
▶ morphisms, which express the relations between objects – steps of

computations.

The language Jane
n ∈ Num x ∈ Var
e ∈ Expr b ∈ Bexpr
S ∈ Statm D ∈ Decl

Steingartner, W., Novitzká, V., Bačíková, M., Korečko, Š., New approach to categorical
semantics for procedural languages, Computing and Informatics, 36(6), 2017, pp. 1385–1414,
DOI: 10.4149/cai_2017.6.1385
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Language Jane – Syntax

The elements n ∈ Num and x ∈ Var have no internal structure from semantic point of
view.

The syntactic domain Expr consists of all well-formed arithmetic expressions created by
the following production rule

e ::= n | x | e + e | e − e | e ∗ e.

Boolean expression from Bexpr can be of the following structure:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b.

The variables used in programs have to be declared. We consider D ∈ Decl as a
sequence of declarations:

D ::= var x; D | ε.

As the statements S ∈ Statm we consider five Dijkstra’s statements together with a
block statement and an input statement:

S ::= x := e|skip|S; S|if b then S else S|while b do S|begin D; S end|input x.
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Categorical denotational semantics of imperative languages

Categorical model
we construct operational model of Jane as the category CState of states,
we assign to states their representation,
because of block structure of Jane, we have to consider also a level of block
nesting (l ∈ Level, Level ⊆ N),
representation of type State has to express variable, its value with respect to the
actual nesting level.
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Specification of states
State

can be considered as some abstraction of computer memory,
change of state means change of a value in memory,
because of block structure of Jane, we have to consider also a level of block
nesting,
every variable occurring in a program has to be allocated,
we can assign and modify a value of allocated variable inducing change of state.

The signature ΣState for states

ΣState =
types : State, Var , Value
opns : init :→ State

alloc : Var , State → State
get : Var , State → Value
del : State → State
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Categorical denotational semantics of imperative languages

States and their representation
the state expresses an abstraction of memory: each step of program
execution is characterized by the current state,
the nesting level in the state allows us to create an environment of
variables and distinguish locally declared variables from global ones,
each state s is an element of the semantic domain s ∈ State and it is
represented as a function

s : Var × Level → Value

s = ⟨((x1, 1), v1), . . . , ((xn, l), vn)⟩

variable level value

x1 1 v1

xn l vn

...
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Representation of operations

The operation JinitK
JinitK = s0 = ⟨((⊥, 1) , ⊥)⟩

creates the initial state of a program with no declared variable.

variable level value

⊥ 1 ⊥

The operation JallocK
JallocK(x, s) = s ⋄ ((x, l) , ⊥) ,

sets actual nesting level to declared variable. Because of undefined value of declared
variable, the operation JallocK does not change the state.

variable level value

x l ⊥
... ... ...
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Representation of operations

The operation J get K returns a value of a variable declared on the highest nesting level,

J get K(x, ⟨. . . , ((x, li) , vi) , . . . , ((x, lk) , vk) , . . .⟩) = vk,

where li < lk, i < k for all i, from the definition of state.

The operation J del K deallocates (forgets) all variables declared on the highest nesting
level lj :

J del K(s ⋄ ⟨((xi, lj) , vk) , . . . , ((xn, lj) , vm)⟩) = s.

variable level value

x li v

... ... ...

xi lj vk
... ... ...

xn lj vm
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Declarations

Declarations
A declaration

var x

is represented as an endomorphism:

[[var x]]D : s → s

for a given state s and defined by

[[var x]]s = [[alloc]](x, s).

A sequence of declarations:

[[var x; D]]s = [[D]] ◦ [[alloc(x, s)]].

A declaration creates a new entry for declared variable with the actual level of nesting
and an undefined value

((x, l) , ⊥) .
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Categorical denotational semantics
Semantics of statements

variable assignment

J x := e Ks =
{

s [((x, l) , v) 7→ ((x, l) , J e Ks)] , for ((x, l) , v) ∈ s,
s⊥, otherwise.

s s′

Jx := eK

empty statement
J skip K = id

s

JskipK
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Categorical denotational semantics

Semantics of statements
sequence of statements

J S1; S2 Ks =


s′, if J S1 Ks = s′′ and J S2 Ks′′ = s′,

s⊥, if J S1 Ks = s⊥, or
if J S1 Ks = s′′ and J S2 Ks′′ = s⊥.

s

s′

s′′

JS1K

JS2K

JS1;S2K
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Categorical denotational semantics
Semantics of statements

conditional statement

J if b then S1 else S2 Ks =


J S1 Ks, if J b Ks = true,
J S2 Ks, if J b Ks = false,
s⊥, otherwise.

s s1

JS1K

s

JS2K
s2

JbKs = true JbKs = false

(a) (b)

William Steingartner Perspectives of semantic modeling in categories 18/43



Statements

J while b do S Ks = J if b then (S, while b do S) else skip K

J input x Ks =
{

s′ = s [v/x] , for ((x, max l) , v′) ∈ s,
s⊥, otherwise.

s0 s1 s2 sn−1 sn

JSK JSK JSK JSK

Jwhile b do SK
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Block statement

begin D, S end

The following is a summary of the four steps used to execute of unnamed blocks.
Nesting level l is incremented. We represent this step by fictive entry in state table

((begin, l + 1) , ⊥)

i.e. endomorphism State → State.
Local declarations are elaborated on nesting level l + 1.
The body S of block is performed.
Locally declared variables are forgotten at the end of block. We model this
situation using operation J del K.

The semantics:

J begin D, S end Ks = J del K ◦ J S K ◦ J D K(s ⋄ ⟨((begin, l + 1), ⊥)⟩)

William Steingartner Perspectives of semantic modeling in categories 20/43



Constructing the category

Now we can define the category CState of states as follows:
category objects are states as sequences of tuples for variables together with
special state s⊥,
category morphisms are functions JSK : s → s′.

The category CState has the following properties:
the special object s⊥ = ⟨((⊥, ⊥), ⊥)⟩, an undefined state, is a terminal object of
our category, from any object there is a unique morphism to this state,
the initial state s0 = ⟨((⊥, 1), ⊥)⟩ is the initial object of our category,
the category CState has no products, because a program written in Jane cannot be
simultaneously in more than one state.

We can state that CState is a category without products and with initial and terminal
objects.
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Categorical denotational semantics
Semantics of procedures

CState

s0

· · ·
s

s′· · ·
J call p K

CpCp

Rp

sp0

· · ·
sp

s′p

J call r K

sq0

· · ·
sqfin

Cq

sr0

· · ·
srfin

Cr

Cr

Rr

Cq

Rq

· · ·
s′′p

J call q K
s′′′p

· · ·
spfin
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Example

var x; var y;
input x;
input y;
if x <= y then

begin
z := x;
x := y;
y := z;

end
else

skip;

We consider values 3 and 5 for variables x and y, resp.
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Categorical representation of program

s0

Jvar xK

Jvar yK

Jinp
ut

xK

Jinpu
t yK

Jvar zK

s1

s2
s3

s4

s5s6

Jz := xK

Jx := yK

Jy := zK
JdelK

CState
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States during program execution

s0
x 1 ⊥
y 1 ⊥

s1
1 3

1 ⊥

s2
1 3

1 5

s3
1 3

1 5

s4
1 5

1 5

x

y

x

y

x

y

x

y

2 ⊥z

2 3z 2 3z

s5
1 5

1 3

x

y

2 3z

s6
1 5

1 3

x

y

2 ⊥z
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Categorical operational semantics

Coalgebraic approach
coalgebras are defined as arrows from the state space (X) to the image of state
space in the endofunctor F (determined by the signature):

⟨J sel1 K, . . . , J seln K⟩ : X → F X

we define coalgebras above the base category, whose objects create a state space
and whose morphisms are transitions,
coalgebras provide observable properties and are one of the tools for modeling the
behavior of dynamical systems,
each individual step of program execution is expressed by the application of a
polynomial endofunctor in the category of configurations.

Steingartner, W., Novitzká, V., Schreiner W., Coalgebraic Operational Semantics for an
Imperative Language, Computing and Informatics, 38(5), 2019, pp. 1181-1209, DOI:
10.31577/cai_2019_5_1181
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Categorical operational semantics

State space and its representation
we consider the data type of configurations as the state space,
memory expresses one moment of program execution:

Memory = {m : Var × Level → Value} ,

representation of state space is a set

Config = Program × Memory × Input × Output,

where configuration is given as follows:

config = (J D∗; S∗ K, m, i∗, o∗) .
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Semantics of statements

We define the execution of one step by morphism J next K:

J next K : Config → Config.

variable assignment x := e:

J next K(J x := e; S∗ K, m, i∗, o∗) = (J S∗ K, m′, i∗, o∗),

where

m′ =


m [((x, Highest(m, x)), v) 7→ ((x, Highest(m, x)), J e Km)]

if Defined(m, x),
m⊥, otherwise,

empty statement

J next K(J skip; S∗ K, m, i∗, o∗) = (J S∗ K, m, i∗, o∗)
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Semantics of statements

sequence of statements S1; S2; S∗:

J next K(J (S1; S2); S∗ K, m, i∗, o∗) =



(J S2; S∗ K, m′, i′∗, o′∗),
if ⟨S1, m⟩ ⇒ m′,

(J S′
1; S2; S∗ K, m′, i′∗, o′∗),
if ⟨S1, m⟩ ⇒ ⟨S′

1, m′⟩,

conditional statement

J next K(J if b then S1 else S2; S∗ K, m, i∗, o∗) =
(J S1; S∗ K, m, i∗, o∗), if J b Km = true,
(J S2; S∗ K, m, i∗, o∗), if J b Km = false,
m⊥, otherwise
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Semantics of statements

user input – statement read

J read K : Config → ConfigValue

J read K(J read x; S∗ K, m, i∗, o∗) =


λv′.(J S∗ K, m′, tail(i∗), o∗),

if Defined(m, x),

(J S∗ K, m⊥, tail(i∗), o∗),
otherwise,

where m′ = m[((x, Highest(m, x)), v) 7→ ((x, Highest(m, x)), v′)],
user output – statement print

J print K : Config → Value × Config

J print K(J print e; S∗ K, m, i∗, o∗) = (J e Km, (J S∗ K, m, i∗, (J e Km; o∗)))
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Coalgebra for language Jane

Coalgebra for language Jane
Category of configurations Config consists of:

objects – configurations config = (J D∗; S∗ K, m, i∗, o∗),
arrows – morphisms J next K, J read K, J print K a J abort K.

Polynomial endofunctor (over the category of configurations):

⟨J abort K, J print K, J next K, J input K⟩ : Config → Q(Config),

Q(Config) = 1 + Config + O × Config + ConfigI .

Q(config) = J abort K(config) Q(config) = J next K(config)
Q(config) = J print K(config) Q(config) = J read K(config)
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Categorical operational semantics – Example

var x; var y;
read x;
read y;
if x <= y then

begin
var z;
z := x;
x := y;
y := z;

end
else

skip;
print x;

For simplicity we introduce the following substitutions:

D1 = var x; D2 = var y;
S1 = read x; S2 = read y;
S3 = if x <= y then begin var z;

z := x; x := y; y := z end else skip
S4 = print x

and we consider values 3 and 5 for variables x and y, resp.
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Example

The initial configuration is

config0 = (J D1; D2; S1; S2; S3; S4 K, m0, i∗, o∗).

Each application of the endofunctor Q represents one step of program execution. First,
the individual declarations and user inputs are processed in separate steps:

Q(config0) = J next K(config0) = config1 =
= (J D2; S1; S2; S3; S4 K, J var x Km0, (3, 5), ε),

Q(config1) = J next K(config1) = config2 =
= (J S1; S2; S3; S4 K, J var y Km1, (3, 5), ε),

Q(config2) = J read K(config2) = config3 =
= (J S2; S3; S4 K, m3, (5), ε),

Q(config3) = J read K(config3) = config4 =
= (J S3; S4 K, m4, ε, ε),
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Example

Q(config4) = J next K(config4) = config5 =
= (J begin var z; z := x; x := y; y := z end; S4 K, m4, ε, ε),

Q(config5) = J next K(config5) = config6 =
= (J var z; z := x; x := y; y := z end; S4 K, m5, ε, ε),

Q(config6) = J next K(config6) = config7 =
= (J z := x; x := y; y := z end; S4 K, m6, ε, ε),

Q(config7) = J next K(config7) = config8 =
= (J x := y; y := z end; S4 K, m7, ε, ε),

Q(config8) = J next K(config8) = config9 =
= (J y := z end; S4 K, m8, ε, ε),

Q(config9) = J next K(config9) = config10 =
= (J end; S4 K, m9, ε, ε),

Q(config10) = J next K(config10) = config11 =
= (J S4 K, J end Km9, ε, ε).
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Example

config0

config1

config2

config3

JnextK

JnextK

JreadK
config4

config5

JreadK JnextK

3 5

config6

JnextK

config7

config8

config9

config10

config11

JnextKJnextK

JnextK

JnextK

JnextK

5

Config

Q

config12

5

JprintK
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Modeling of recursive computations
Modeling of recursive computations

we model recursion development and subsequent calculation using
algebras and coalgebras and their properties,
there is exactly one morphism from the initial algebra to any algebra
(A, a) – catamorphism, in the calculation it acts as an iterator
(deconstructor) – a function that provides elements of the structure,
from any coalgebra (U, φ) there exists one unique morphism into the
final coalgebra – anamorphism, in calculations it acts as a coiterator
(constructor) – a function that creates a structure,
the composition of catamorphism and anamorphism creates a new
morphism – hylomorphism, which represents a recursive function – by
creating complex data structures and then processing them.

Steingartner, W., Macko, P., Some New Approaches in Functional Programming Using Algebras
and Coalgebras, Electronic Notes in Theoretical Computer Science, 279(3), 2011, pp. 41–62
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Categorical modeling in differential calculus

the relationship between
functions and their derivatives
expresses a categorical model,
we model functions and their
derivatives as objects in the
category of morphisms Der→

over the base category Der,
the relationship between the two
categories is expressed by a
codomain functor:

Cod : Der→ → Der

der

f

f ′

f

f ′

Der→

Der

Cod

Steingartner, W., Galinec, D., The Rôle of Categorical Structures in Infinitesimal Calculus,
Journal of Applied Mathematics and Computational Mechanics, 12(1), 2013, pp. 107–119
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Modeling of component systems
1 interfaces and interactions between components (algebraic

specifications) – interface category (objects are interfaces,
morphisms are interactions),

2 contracts for component composition and interaction - (I) we extend
interface specifications with assumptions and guarantees or (II) we
express them as formulas in predicate linear logic,

3 dependencies – expressed as predicates in predicate linear logic.

1

2

3

interfaces

contracts

dependencies

Steingartner, W., Novitzká, V., Benčková, M., Prazňák, P., Considerations and Ideas in
Component Programming – Towards to Formal Specification, 25th CECIIS, 2014, pp. 332–339

William Steingartner Perspectives of semantic modeling in categories 38/43



Denotational semantics of concatenative language
Research in the field of concatenative languages

we designed a simple concatenative / compositional language KKJ,
the language has a compositional character – the syntactic
concatenation of programs corresponds to the semantic composition
of functions,
KKJ language syntax:

e ::= ε | i | n | {e} | e e

the state of memory is expressed by the stack – the program gradually
changes the contents of the stack,
in our research we constructed classical denotational semantics for the
KKJ language as the first step in research.

Mihelič, J., Steingartner, W., Novitzká, V., A denotational semantics of a concatenative /
compositional programming language, Acta Politechnica Hungarica, 18(4), 2021, pp. 231–250,
DOI: 10.12700/APH.18.4.2021.4.13
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Application of research into teaching

Software to support the teaching of formal semantics
we also apply published results focused on categorical semantics and
semantic modeling in the teaching process,
our main goal is to implement and deploy a comprehensive learning
environment – an interactive software package that will allow
illustrative and understandable use of semantic methods,
the mentioned software package will provide full-fledged modules for
working with individual semantic methods and principles, which are
presented in the teaching.

Steingartner, W., Novitzká, V., A survey of teaching tools for the course on the Semantics of
Programming Languages, In: Mathematical Modelling in Physics and Engineering, Częstochowa,
Poland, Politechnika Częstochowska, pp. 40–47. Invited lecture.
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Application of research into teaching

Software to support the teaching of formal semantics

GUI

Compiler

Natural semantics

Struct. op. semantics

Denot. semantics

Abstract machine

denot. semantics

operational semantics

Categorical

Categorical

View
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Conclusion
Achieved results

categorical models for programming languages: semantic methods for
imperative languages,
semantic modeling of recursive computations, the relationship of
functions and their derivatives, the properties of categorical models of
components and the relationships between them and denotational
semantics for a new concatenative language,
application of achieved results to teaching.

Areas for future research
modeling of component systems,
semantic modeling for concatenative and some domain-specific
languages,
modeling of properties of mathematical objects,
application of results in the field of construction of reliable programs.
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Thank You for Your attention.
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