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Logic S∞-space

Let L = (Rni
i )i∈I be a countable relational language and

XL = Πi∈I2
ωni

be the corresponding space under the product topology τ .

XL is the space of all L-structures on ω:
x = (...xi ...) ∈ XL ⇐ structure (ω,Ri )i∈I ,

Ri is the ni -ary relation defined by xi : ωni → 2.

The logic action of S∞ is defined on XL by the rule:

g ◦ x = y⇔ ∀i∀s̄(yi (s̄) = xi (g
−1(s̄)).
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Other topologies

For any countable fragment F of Lω1ω, which is closed under
quantifiers, all sets

Mod(φ, s̄) = {M ∈ XL : M |= φ(s̄)} with s̄ ⊂ ω

form a basis defining another topology (denoted by tF ) of the
S∞-space XL.

The logic action of the group S∞ on XL is continuous with respect
to tF .
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Space of expansions

Let G ≤closed S∞.

When M0 = (ω, . . .) with G = Aut(M0) then a topology similar to
τ can be defined on the G -space of all L-expansions of M0.

Having an appropriate fragment F of Lω1ω, a topology similar to
tF can be defined on this G -space.
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General case when G ≤closed S∞

Fix G ≤closed S∞ and
(〈X , τ〉,G ) = Polish G -space with a countable basis.

Along with τ we shall consider another topology on X .

Nice topology:

(below NG = standard basis of the topology of G )
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Nice topology

Definition (H.Becker) A topology t on X is nice for the
G -space (〈X , τ〉,G ) if:
(A) t is a Polish, t is finer than τ and the G -action remains
t-continuous.
(B) There exists a basis B for t (called nice) such that:

1 B is countable;

2 for all B1,B2 ∈ B, B1 ∩ B2 ∈ B;

3 for all B ∈ B, X \ B ∈ B;

4 for all B ∈ B and u ∈ NG , B∆u,B?u ∈ B;

5 for any B ∈ B there exists an open subgroup H < G such that
B is invariant under the corresponding H-action.
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Logic space for Polish groups?

Question:
Is it possible to extend the generalised model theory of H.Becker to
actions of Polish groups (without the assumption G ≤ S∞) ?
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Looking for terminology. Canonical structure for G

Let (G , d) be a Polish group with a left invariant metric ≤ 1.
If (X , d) is its completion, then G ≤ Iso(X ).

J.Melleray: Any Polish G is the automorphism group of the
continuous structure on X , say MG .

Let S ⊆cntble,dnse X . Enumerate all orbits of G of finite tuples of S .

For the closure of such an n-orbit C define a predicate RC on
(X , d) (with continuity moduli = id) by

RC (y1, ..., yn) = d((y1, ..., yn),C ) ( i.e. inf {d(ȳ , c̄) : c̄ ∈ C}).
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The space of continuous structures

Fix a continuous signature L and Polish (Y, d);
S be a dense cntble ⊆ Y.

The Polish space YL of continuous L-strctres on (Y, d):

Metric: Enumerate all (j , s̄), where s̄ ∈ S and |s̄| = arity(Rj).
For L-structures M and N on Y let

δ(M,N) =
∞∑
i=1

{2−i |RM
j (s̄)− RN

j (s̄)| : i is the number of (j , s̄)}.

Logic action: the Polish group Iso(Y) acts on YL continuously

Taking Y = MG we get a G -space of L-expansions of MG .
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Universality

Theorem ([CL], [IMI])
For any Polish group G there is Polish (Y, d) and a continuous
relational signature L such that

G < Iso(Y)

for any Polish (G ,X ) there is a Borel 1-1-map M : X → YL
s. t. for any x , x ′ ∈ X structures M(x) and M(x ′) are
isomorphic if and only if x and x ′ are in the same G -orbit,

The map M is a Borel G -invariant 1-1-reduction of (X ,EG ) to
(YL,EIso(Y)).
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Looking for terminology

Find counterparts for Mod(φ, s̄) and s̄-stabilizers.
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Grey subsets and subgroups

A grey subset of X , denoted φ v X , is a function X → [0, 1].

It is open (closed), φ ∈ Σ1 (resp. φ ∈ Π1), if the cone φ<r

(resp. φ>r ) is open for all r ∈ [0, 1]
(here φ<r = {z ∈ X : φ(z) < r}).

(We also define Borel classes Σα, Πα).

When G is a Polish group, then H v G is called a grey subgroup
if H(1) = 0, ∀g ∈ G (H(g) = H(g−1)) and

∀g , g ′ ∈ G (H(gg ′) ≤ H(g) + H(g ′)).
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Grey stabilizer

Basic example:
For c̄ from (Y, d) and a linear δ with δ(0) = 0

grey stabilizer Hδ,c̄ v Iso(Y):

Hδ,c̄(g) = δ((d(c̄, g(c̄))), where g ∈ Iso(Y).
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Example: grey subsets of YL

A continuous formula is an expression built from 0,1 and atomic
formulas by applications of the following functions:

x/2 , x−̇y = max(x − y , 0) , min(x , y) , . . . , supx and infx .

Any continuous sentence φ(c̄) defines a grey subset of YL which
belongs to Σn for some n:

φ(c̄) takes M to the value φM(c̄).
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Invariant grey subsets

Definition X = G -space.
A grey φ v X is invariant with respect to H v G if for any g ∈ G
we have φ(g(x)) ≤ φ(x)+̇H(g).

Example: Assuming that continuity moduli of L-symbols are id
for any continuous φ(x̄) there is a linear function δ such that

Hδ,c̄(g) = δ((d(c̄ , g(c̄))), where g ∈ Iso(Y).

and the grey subset φ(c̄) v YL satisfy

φg(M)(c̄) ≤ φM(c̄)+̇Hδ,c̄(g).
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Grey bases

1. Distinguish R, a countable family of open grey v G so that

all ρ<r for ρ ∈ R and r ∈ Q, form a basis of the topology of
G .

R consists of grey cosets, i.e. for such ρ ∈ R there is a grey
subgroup H ∈ R and an element g0 ∈ G so that for any
g ∈ G , ρ(g) = H(gg−1

0 ).

2. Considering a (G ,R)-space X we distinguish a cntble family U
of open grey sbsts of X generating the topol.
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Nice basis

Definition. A family B of Borel grey subsets of the G -space X is a
nice basis w.r.to R if:

B is countable and generates the topol. finer than τ ;

for all φ1, φ2 ∈ B, the functions min(φ1, φ2), max(φ1, φ2),
|φ1 − φ2|, φ1−̇φ2 φ1+̇φ2 belong to B;

for all φ ∈ B and rational r ∈ [0, 1], rφ and 1− φ ∈ B;

for all φ ∈ B and ρ ∈ R, φ∗ρ, φ∆ρ ∈ B;

any φ ∈ B is invariant w.r.to some open grey subgrp H ∈ R.

A topology t on X is R-nice for the G -space 〈X , τ〉 if:
(a) t is Polish, t is finer than τ and (G ,X ) is continuous w.r.to t;
(b) there exists a nice basis B so that t is generated by all φ<q

with φ ∈ B and q ∈ Q ∩ (0, 1].
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The Urysohn sphere

The Urysohn sphere U is the unique Polish metric space of
diameter 1 which is universal and ultrahomogeneous.

The rational Urysohn sphere, QU, is both ultrahomogeneous and
universal for countable metric spaces with rational distances and
diameter ≤ 1.

There is a nice embedding of QU into U.
Let G0 be a dense countable subgroup of Iso(QU); we may view it
as a subgroup of Iso(U).

We now define R

Aleksander Ivanov Generalized model theory and continuous logic



Generalised model theory
Logic space for continuous structures
Generalized continuous model theory

Complexity

The Urysohn sphere

The Urysohn sphere U is the unique Polish metric space of
diameter 1 which is universal and ultrahomogeneous.

The rational Urysohn sphere, QU, is both ultrahomogeneous and
universal for countable metric spaces with rational distances and
diameter ≤ 1.

There is a nice embedding of QU into U.
Let G0 be a dense countable subgroup of Iso(QU); we may view it
as a subgroup of Iso(U).

We now define R

Aleksander Ivanov Generalized model theory and continuous logic



Generalised model theory
Logic space for continuous structures
Generalized continuous model theory

Complexity

The Urysohn sphere as a platform. RU(G0)

Let R0 be the family of all clopen grey subgroups of Aut(U) of the
(truncated) form

Hq,s̄ : g → q · d(g(s̄), s̄), where s̄ ⊂ QU, and q ∈ Q+.

(R0 is closed under conjugacy by elements of G0)

Consider the closure of R0 under the function max and define
RU(G0) to be the family of all G0-cosets of grey subgroups from
max(R0).
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The Urysohn space as a platform. BL

Let L be a countable fragment of Lω1ω and

let BL be the family of all grey subsets of UL defined by
continuous L-sentences (with parameters from QU) as above.
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The space UL

Theorem (IMI17)

The family BL is a RU(G0)-nice basis.

Similar constructions (with weaker forms of this theorem, where
nice is replaced by good):

The complex Hilbert space l2(N).

The measure algebra on [0, 1].
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Existence

Theorem ([IMI17]).
Let (G ,R) be a Polish group with R satisfying

(i) for every grey subgroup H ∈ R if gH ∈ R, then Hg ∈ R;
(ii) R is closed under max and multiplying by rationals.

Let 〈X , τ〉 be a G -space and
U be a countable family of Borel grey subsets of X generating a

topology finer than τ , so that
each φ ∈ U is invariant w.r.to some grey subgroup H ∈ R .

Then there is an R-nice topology for (〈X , τ〉,G ) so that U
consists of open grey subsets.
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Ubiquity in the case of U

Theorem ([IMI17]). Let G = Iso(U).
Consider the logic G -space UL under the standard topology τ .
Let F be a countable family of Borel grey subsets of UL generating

a topology finer than τ such that
any φ ∈ F is invariant w.r.to a grey subgroup H ∈ RU.

Then there is an RU-nice topology t for the G -space 〈UL, τ〉 which
is generated by some countable fragment of Lω1ω such that F
consists of t-open grey subsets.
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Lindström

G is a Polish group with a grey basis R consisting of grey cosets,
〈X , τ〉 is a Polish G -space, ect.

Theorem

Let t be R-good.
Let Y = Gx0 for some (any) x0 ∈ Y and Y be a Gδ-subset of X .
Then both topologies τ and t are equal on Y .
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Companions

Let X0 and X1 be closed invariant subsets of (X , t).
X1 is a companion of X0 if τ -closures of X0 and X1 coincide and
any element of B is τ -clopen on X1.
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Effros space

Given a Polish space Y the Effros structure on F(Y) is the Borel
space with respect to the σ-algebra generated by

CU = {D ∈ F(Y) : D ∩ U 6= ∅},

for open U ⊆ Y.

Given a Polish group G and a continuous (or Borel) action (G Y),
grey basis R (for G ) and B (for t on Y) consider
F((Y, t))m ×F(G )n.
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For example

Coskey and Lupini:
For any Polish G and any standard Borel G -space X there is a
continuous group monomorphism Φ : G → Iso(U) and a Borel
Φ-equivariant injection f : X → UL.

All Polish groups can be considered as elements of F(Iso(U)),
all Polish spaces are elements of F(UL) and
Polish G -spaces are pairs from F(UL)×F(Iso(U)).
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Complete theories

G is a Polish group with a grey basis R consisting of grey cosets,
(X , τ), t, B, ...

Observation. The set of indecomposable G -invariant members
X ∈ F(X ,t) (i.e. ”complete theories”) is Borel.
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Complexity of companions

Fix an enumeration of the sets

B(Q) = {(φ)<r : φ ∈ B and r ∈ Q ∩ [0, 1]},

Bo(Q) = {(φ)<r : φ is a clopen member of B and r ∈ Q ∩ [0, 1]}

(a basis of the topology τ)

Theorem. The set of pairs (X0,X1) of G -invariant members of
F(X ,t) with the condition that X1 is a companion of X0 is Borel.
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A Borel substitute for stability

Given a (G ,R)-space X , a nice basis B, a grey subset φ ∈ B and a
t-closed subset Y ⊆ X define the notion φ is unstable w.r. to Y .
(φ tgether wth some H,H ′ ∈ R s.t. φ is invrnt w.r to max(H,H ′)).

Example: U , QU , G0 (dense cntable ≤ Iso(QU)) , RU(G0) , BL.

φ(s̄ s̄ ′) ∈ BL is unstable w.r. to Y if for any n and any ε
∃s̄1s̄

′
1 . . . s̄n s̄

′
n s.t. tpU(s̄i s̄

′
j ) =ε tp

U(s̄ s̄ ′) for all i , j and
Y ∩

⋂
{(φ(s̄i s̄

′
j ))≤ε : i < j} ∩

⋂
{(φ(s̄i s̄

′
j ))≥1−ε : j ≤ i} 6= ∅.
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A Borel substitute for stability

Given a (G ,R)-space X , a nice basis B, a grey subset φ ∈ B and a
t-closed subset Y ⊆ X define the notion φ is unstable w.r. to Y .
(φ tgether wth some H,H ′ ∈ R s.t. φ is invrnt w.r to max(H,H ′)).

Example: U , QU , G0 (dense cntable ≤ Iso(QU)) , RU(G0) , BL.

φ(s̄ s̄ ′) ∈ BL is unstable w.r. to Y if for any n and any ε
∃s̄1s̄

′
1 . . . s̄n s̄

′
n s.t. tpU(s̄i s̄

′
j ) =ε tp

U(s̄ s̄ ′) for all i , j and
Y ∩

⋂
{(φ(s̄i s̄

′
j ))≤ε : i < j} ∩

⋂
{(φ(s̄i s̄

′
j ))≥1−ε : j ≤ i} 6= ∅.
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Stable platforms

The platform U is not stable.
The following platforms are stable:

The complex Hilbert space l2(N).

The Polish ultrametric Urysohn space for Q ∩ [0, 1].
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A Borel substitute for extremely amenable theories

Given a (G ,R)-space X , B, H ∈ R, φ ∈ B and a t-closed subset
Y ⊆ X define the notion

((φ)≤0,H) extends to an invariant type of Y .

Example: U , QU , G0 (dense cntable ≤ Iso(QU)) , RU(G0) , BL.

φ(s̄0s̄
′) and H1,s̄0 extend to an invariant type of Y

if for any ε and any s̄1 . . . s̄n s.t. tpU(s̄0) =ε tp
U(s̄i ) for all i

there exists s̄ s.t. Y ∩
⋂
{(φ(s̄i s̄))≤ε : i ≤ n} 6= ∅.

A substitute for ”Y is e.a.”: any ((φ)≤0,H) extends to an
invariant type of Y .
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Complexity and e.a.

Theorem. The set of X , G -invariant members of F(X ,t), with
the condition that any ((φ)≤0,H) extends to an invariant type of
X is Borel.
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Paper

A. Ivanov and B. Majcher-Iwanow, Polish G-spaces, the generalized
model theory and complexity,
to appear in ”Research Trends in Contemporary Logic” (edited by
Melvin Fitting, Dov Gabbay, Massoud Pourmahdian, Adrian Rezus,
and Ali Sadegh Daghighi), arXiv:1909.12613
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