Pluripotential theory: a synthetic approach

Sébastien Boucksom (joint work with Mattias Jonsson)

CNRS, Sorbonne Université, Institut de Mathématiques de Jussieu

László 70+1

A (biased) review of potential theory

Consider a compact Riemann surface X with a Kähler form ω of mass 1.

- Each probability measure on X is of the form $\mu = \omega_{\varphi} := \omega + dd^{c} \varphi$ where $\varphi = \omega$ -subharmonic function.
- The energy $J(\mu) := \frac{1}{2} \int (-\varphi) \, dd^c \, \varphi \in [0, +\infty]$ is finite iff $\nabla \varphi \in L^2$.
- The space $\mathcal{M}^1 := \{\mu \mid J(\mu) < \infty\}$ of measures of finite energy is complete with respect to quasi-metric $\delta(\mu, \nu) := J(\varphi \psi)$, where $\mu = \omega_{\varphi}$, $\nu = \omega_{\psi}$.
- Variational formulation:

$$\mathbf{J}(\boldsymbol{\mu}) = \sup_{\varphi \, \boldsymbol{\omega} \text{-sh}} (\mathbf{E}(\varphi) - \int \varphi \, \boldsymbol{\mu})$$

where $E(\varphi) := \frac{1}{2} \int \varphi(\omega + \omega_{\varphi})$ primitive of $\varphi \mapsto \omega_{\varphi}$.

- Shows $\mu \mapsto J(\mu)$ convex lsc on (compact) space of probability measures.
- In fact, strictly convex ⇒ existence of equilibrium measure μ_K for any (non-polar) compact K ⊂ X (unique minimizer of J(μ) with supp μ ⊂ K).

Synthetic pluripotential formalism

Consider a compact topological space X, equipped with:

- a dense linear subspace $\mathcal{D} \subset C^0(X)$ of **test functions** φ , containing the constants;
- a partially ordered vector space \mathcal{Z} of **closed** (1,1)-forms, with a linear map $dd^c \colon \mathcal{D} \to \mathcal{Z}$ vanishing on constants;
- a nonzero *n*-linear symmetric map $Z^n \ni (\theta_1, \ldots, \theta_n) \mapsto \theta_1 \wedge \cdots \wedge \theta_n$ to signed Radon measures on X, assumed to be positive for $\theta_i \in Z_+$, and such that bilinear form

$$\mathcal{D} \times \mathcal{D} \to \mathbb{R} \quad (\varphi, \psi) \mapsto \int \varphi \, \mathrm{dd}^{\mathrm{c}} \, \psi \wedge \theta_1 \wedge \cdots \wedge \theta_{n-1}$$

is symmetric (integration-by-parts), and seminegative when $\theta_i \ge 0$ (Hodge index condition).

We then introduce the **Bott–Chern space** $\operatorname{H}_{\operatorname{BC}}(X) := \mathcal{Z}/\operatorname{dd^c} \mathcal{D}$, with its **positive cone** = interior of the image of \mathcal{Z}_+ .

Main examples

• Kähler case: X = compact Kähler manifold; $\mathcal{D} = C^{\infty}(X)$, $\mathcal{Z} = \text{usual space of closed}$ (1,1)-forms. Then $H_{BC}(X) = H^{1,1}(X, \mathbb{R})$, positive cone = Kähler cone. For $\varphi \in \mathcal{D}$ and $\theta_i \in \mathcal{Z}_+$ have

$$\int \varphi \, \mathrm{dd}^{\mathrm{c}} \, \varphi \wedge \theta_1 \wedge \cdots \wedge \theta_{n-1} = -\int \mathrm{d}\varphi \wedge \mathrm{d}^{\mathrm{c}} \varphi \wedge \theta_1 \wedge \cdots \wedge \theta_{n-1} \leq 0.$$

- Non-Archimedean case: X = projective Berkovich space over NA field; $\mathcal{D} = \mathsf{PL}$ functions \leftrightarrow divisors on models of X over valuation ring. Then $\mathrm{H}_{\mathrm{BC}}(X) = \mathrm{N}^1(X)$, positive cone = ample cone.
- Toric case: $X = \text{compactification of } \mathbb{R}^n$ wrt rational fan Σ , and set:
 - $PL_{\Sigma} = \mathbb{Q}$ -PL functions on \mathbb{R}^n wrt to rational polyhedral decomposition with recession fan Σ ;
 - $\mathcal{D} = \text{bounded functions in } PL_{\Sigma};$
 - $\mathcal{Z} = PL_{\Sigma}$ modulo affine functions, with $dd^c \colon \mathcal{D} \to \mathcal{Z}$ obvious map;
 - $\mathcal{Z}_+ =$ convex functions in PL_{Σ} modulo affine functions;
 - wedge product map induced by mixed real Monge–Ampère operator.

Monge–Ampère operator and Dirichlet functional

Back to general setting. Set $\mathcal{M} =$ space of probability measures on X.

- Fix $\omega \in \mathcal{Z}_+$ such that $[\omega] > 0$ in $\mathrm{H}_{\mathrm{BC}}(X)$, with volume $V := \int_X \omega^n > 0$.
- Space of ω -psh test functions $\mathcal{D}_{\omega} := \{ \varphi \in \mathcal{D} \mid \omega_{\varphi} := \omega + dd^{c} \varphi \geq 0 \}.$
- Define the Monge-Ampère operator MA: $\mathcal{D}_{\omega} \to \mathcal{M}$ by MA(φ) := $V^{-1}\omega_{\varphi}^{n}$. It admits a primitive $E(\varphi) = \frac{1}{n+1} \sum_{j=0}^{n} V^{-1} \int \varphi \, \omega_{\varphi}^{j} \wedge \omega^{n-j}$.
- Hodge index condition $\Rightarrow E$ concave on $\mathcal{D}_{\omega} \Leftrightarrow$ nonnegativity of the **Dirichlet functional**

$$J(\varphi, \psi) := E(\varphi) - E(\psi) + \int (\psi - \varphi) MA(\varphi).$$

- For n = 1, $J(\varphi, \psi) = \frac{1}{2} \int (\varphi \psi) dd^{c}(\psi \varphi)$. In general, $J(\varphi, \psi)$ positive linear combination of $\int (\varphi \psi) dd^{c}(\psi \varphi) \wedge \omega_{\varphi}^{j} \wedge \omega_{\psi}^{n-j}$, $j = 0, \dots, n$.
- Dirichlet functional is quasi-symmetric, i.e. $J(\varphi, \psi) \approx J(\psi, \varphi)$, and satisfies quasi-triangle inequality $J(\varphi, \psi) \lesssim J(\varphi, \tau) + J(\tau, \psi)$ (BBEGZ).

Measures of finite energy

- Define the energy of $\mu \in \mathcal{M}$ as $J(\mu) := \sup_{\varphi \in \mathcal{D}_{\omega}} (E(\varphi) \int \varphi \mu) \in [0, +\infty]$. Then $J : \mathcal{M} \to [0, +\infty]$ is convex and lsc.
- Endow the space of measures of finite energy $\mathcal{M}^1 := \{\mu \in \mathcal{M} \mid J(\mu) < \infty\}$ with the strong topology = coarsest refinement of weak topology such that $J : \mathcal{M}^1 \to \mathbb{R}$ continuous.
- If $\mu = MA(\varphi)$ with $\varphi \in \mathcal{D}_{\omega}$, then concavity of $E \Rightarrow J(\mu) = J(\varphi, 0) < \infty$.

Theorem (BJ23)

Assume ω has the orthogonality property. Then:

(i) MA: $\mathcal{D}_{\omega} \to \mathcal{M}^1$ has dense image;

(ii) the strong topology of \mathcal{M}^1 is defined by a unique quasi-metric δ such that

 $\delta(\mathrm{MA}(\varphi),\mathrm{MA}(\psi)) = \mathrm{J}(\varphi,\psi) \quad \text{for} \quad \varphi,\psi \in \mathcal{D}_{\omega};$

(iii) the quasi-metric space (\mathcal{M}^1, δ) is complete.

Comments

• Kähler case: orthogonality property holds; amounts to

$$\int (f - \mathbf{P}(f)) \operatorname{MA}(\mathbf{P}(f)) = 0$$

for all $f \in \mathcal{D}$ with ω -psh envelope P(f) (and Theorem known in that case, as a consequence of BBEGZ).

- NA (and hence toric) case: orthogonality property also holds (B-Gubler-Martin).
- Density of the image of MA: pick μ ∈ M¹, and a maximizing sequence for μ, i.e. a sequence (φ_j) in D_ω that computes J(μ) = sup_φ(E(φ) − ∫ φ μ).
- Orthogonality property \Rightarrow uniform differentiability of Legendre transform of energy \Rightarrow MA(φ_j) $\rightarrow \mu$.
- Quasi-metric δ defined on (dense) image of MA. Extended to M¹ by uniform continuity, using Hölder estimates for mixed MA integrals derived from iterated application of Cauchy–Schwarz inequality (Hodge index condition). Strategy going back to Błocki, BBEGZ etc...

Varying ω

From now on assume orthogonality property.

- $\mathcal{M}^1 = \mathcal{M}^1_{\omega}$ only depends on $[\omega] \in H_{BC}(X)$, but not independent of $[\omega]$ in general (e.g. non-connected Riemann surface).
- Say submean value property holds if $\sup \varphi \leq V^{-1} \int \varphi \, \omega^n + C$ for all $\varphi \in \mathcal{D}_{\omega}$ and a uniform constant C. Condition independent of ω , and holds iff X irreducible in Kähler and NA cases.

Theorem (BJ23)

Assume the submean value (and orthogonality) property. Then:

- (i) \mathcal{M}^1 is independent of ω (as a topological space);
- (ii) for each $\theta \in \mathbb{Z}$, there exists $J_{\omega}^{\theta} \colon \mathcal{M}^1 \to \mathbb{R}$ continuous such that $J_{\omega}^{\theta}(\mu) = \frac{d}{dt} \big|_{t=0} J_{\omega+t\theta}(\mu)$ for $\mu \in \mathcal{M}^1$ (twisted energy);

(iii) $\omega \mapsto J^{\theta}_{\omega}(\mu)$ is Hölder continuous.

Application to cscK metrics and K-stability

- Assume first X compact Kähler manifold. Smooth metric ρ on canonical bundle $K_X \leftrightarrow$ volume form $\mu_{\rho} \rightsquigarrow$ entropy $\operatorname{Ent} : \mathcal{M} \to \mathbb{R} \cup \{+\infty\}$, such that $\operatorname{Ent}(\mu) := \int \log\left(\frac{\mu}{\mu_{\rho}}\right) \mu$ if $\mu \ll \mu_{\rho}$ and ∞ otherwise.
- Define free energy $F_\omega\colon \mathcal{M}^1\to\mathbb{R}\cup\{+\infty\}$ by

$$F_{\omega}(\mu) = Ent(\mu) + J_{\omega}^{\theta}(\mu)$$

with $\theta \in \mathcal{Z}$ curvature of ρ .

- Free energy independent of ρ (up to additive constant), and $F_{\omega} \circ MA = Mabuchi K$ -energy on \mathcal{D}_{ω} .
- Chen–Cheng: there exists a unique cscK metric in [ω] ⇐⇒ F_ω coercive: F_ω ≥ ε J_ω −C with ε, C > 0.
- NA case: PL metric ρ on $K_X \rightsquigarrow$ NA entropy Ent \rightsquigarrow free energy $F_{\omega} = Ent + F_{\omega}^{\theta}$ with $\theta \in \mathcal{Z}$ curvature of ρ .
- Coercivity of $F_{\omega} \Leftrightarrow$ (strong) K-stability of (X, ω) .

Openness for cscK metrics and K-stability

Theorem (BJ23)

Assume X compact Kähler or projective Berkovich space. Then coercivity of F_{ω} is an open condition wrt ω .

- Kähler case: openness of unique cscK metrics (Lebrun-Simanca);
- NA case: openness of strong K-stability;
- actually show that twisted coercivity threshold

 $\sup\{\sigma \in \mathbb{R} \mid F + \mathcal{J}_{\omega}^{\theta} \ge \sigma \mathcal{J}_{\omega} + A \text{ for some } A \in \mathbb{R}\}\$

continuous function of (ω, θ) for any $F: \mathcal{M}^1 \to \mathbb{R} \cup \{+\infty\}$.

Thanks for your attention, et joyeux anniversaire László !